Diagnosing and grading gastric atrophy and intestinal metaplasia using semi-supervised deep learning on pathological images: development and validation study.

Gastric Cancer

Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine; Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Zhonghuan South Road, Wangjing, Beijing, 100102, China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Patients with gastric atrophy and intestinal metaplasia (IM) were at risk for gastric cancer, necessitating an accurate risk assessment. We aimed to establish and validate a diagnostic approach for gastric biopsy specimens using deep learning and OLGA/OLGIM for individual gastric cancer risk classification.

Methods: In this study, we prospectively enrolled 545 patients suspected of atrophic gastritis during endoscopy from 13 tertiary hospitals between December 22, 2017, to September 25, 2020, with a total of 2725 whole-slide images (WSIs). Patients were randomly divided into a training set (n = 349), an internal validation set (n = 87), and an external validation set (n = 109). Sixty patients from the external validation set were randomly selected and divided into two groups for an observer study, one with the assistance of algorithm results and the other without. We proposed a semi-supervised deep learning algorithm to diagnose and grade IM and atrophy, and we compared it with the assessments of 10 pathologists. The model's performance was evaluated based on the area under the curve (AUC), sensitivity, specificity, and weighted kappa value.

Results: The algorithm, named GasMIL, was established and demonstrated encouraging performance in diagnosing IM (AUC 0.884, 95% CI 0.862-0.902) and atrophy (AUC 0.877, 95% CI 0.855-0.897) in the external test set. In the observer study, GasMIL achieved an 80% sensitivity, 85% specificity, a weighted kappa value of 0.61, and an AUC of 0.953, surpassing the performance of all ten pathologists in diagnosing atrophy. Among the 10 pathologists, GasMIL's AUC ranked second in OLGA (0.729, 95% CI 0.625-0.833) and fifth in OLGIM (0.792, 95% CI 0.688-0.896). With the assistance of GasMIL, pathologists demonstrated improved AUC (p = 0.013), sensitivity (p = 0.014), and weighted kappa (p = 0.016) in diagnosing IM, and improved specificity (p = 0.007) in diagnosing atrophy compared to pathologists working alone.

Conclusion: GasMIL shows the best overall performance in diagnosing IM and atrophy when compared to pathologists, significantly enhancing their diagnostic capabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896941PMC
http://dx.doi.org/10.1007/s10120-023-01451-9DOI Listing

Publication Analysis

Top Keywords

deep learning
12
validation set
12
atrophy compared
12
weighted kappa
12
diagnosing atrophy
12
gastric atrophy
8
atrophy intestinal
8
intestinal metaplasia
8
semi-supervised deep
8
gastric cancer
8

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Few-shot learning for highly accelerated 3D time-of-flight MRA reconstruction.

Magn Reson Med

September 2025

Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Purpose: To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms.

Methods: A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF