Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is widely expressed in the human body, and it is detected to be particularly abundant in adipose tissue. ITIH5 expression is increased in people with obesity compared to lean persons and is decreased by diet-induced weight loss. This suggests that ITIH5 may be involved in the development of adiposity and clinical metabolic variables, although its exact function remains unknown. We measured the protein concentration of ITIH5 in adipose samples from patients undergoing abdominoplasty and tested for correlation with the subjects' BMI as well as inflammatory mediators. We stimulated human adipose stem cells (ASCs) with recombinant (r)ITIH5 protein and tested for an effect on proliferation, differentiation, and immunosuppressive properties when the cells were exposed to an artificial inflammatory environment. We found positive correlations between ITIH5 levels and the BMI (p < .001) as well as concentrations of inflammatory cytokines (TNF-α, IL-6, and MCP-1) in adipose tissue (p < .01). Application of the rITIH5 protein inhibited both proliferation (p < .001) and differentiation of ASCs. Especially, the development of mature adipocytes was reduced by over 50%. Moreover, rITIH5 decreased the release of IL-6 and MCP-1 when the cells were exposed to TNF-α and IL-1β (p < .001). Our data suggest that ITIH5 is an adipokine that is increasingly released during human adipose tissue development, acting as a regulator that inhibits proliferation and adipogenic differentiation of ASCs. ITIH5 thus presents itself as a positive regulator of adipose tissue homeostasis, possibly protecting against both hyperplasia and hypertrophy of adipose tissue and the associated chronic inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202301366RDOI Listing

Publication Analysis

Top Keywords

human adipose
8
adipose stem
8
itih5
6
itih5 inhibits
4
inhibits proliferation
4
proliferation adipogenic
4
adipogenic differentiation
4
differentiation secretion
4
secretion inflammatory
4
inflammatory cytokines
4

Similar Publications

Increased adiposity and chronic psychosocial stress (CPS) are plausible modifiable contributors of the recent increase in early-onset colorectal cancer (EOCRC). We conducted an 8-week randomized controlled pilot trial evaluating the feasibility and acceptability of time restricted eating (TRE) (daily ad libitum eating between 12-8pm) and Mindfulness ("Mindfulness for Beginners" course from the Calm app) among young adults. Participants were randomized to the following groups: TRE ( = 10); Mindfulness ( = 11); TRE & Mindfulness ( = 11); or Control ( = 11).

View Article and Find Full Text PDF

Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.

Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.

View Article and Find Full Text PDF

In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.

View Article and Find Full Text PDF

Prostate cancer is a significant global health issue with inflammation emerging as a critical driver of progression. The prostate tumor microenvironment (TME) is comprised of tumor cells, mesenchymal stem cells, immune cells, cancer-associated fibroblasts, adipocytes, and the extracellular matrix. All of these TME components interact soluble factors, such as growth factors, cytokines, and chemokines.

View Article and Find Full Text PDF

To investigate the genetic determinants of fat distribution across anatomical sites and their implications for health outcomes. We analyzed neck-to-knee MRI data from the UK Biobank ( = 37,589) to measure fat at various locations and used Mendelian randomization to assess effects on 26 obesity-related diseases and 94 biomarkers from FinnGen and other consortia. We identified genetic loci associated with 10 fat depots: abdominal subcutaneous adipose tissue ( = 2 loci), thigh subcutaneous adipose tissue (25), thigh intermuscular adipose tissue (15), visceral adipose tissue (7), liver proton density fat fraction (PDFF) (8), pancreas PDFF (11), paraspinal adipose tissue (9), pelvic bone marrow fat (28), thigh bone marrow fat (27), and vertebrae bone marrow fat (5).

View Article and Find Full Text PDF