A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Charge Management Enables Efficient Spontaneous Chromatic Adaptation Bipolar Photodetector. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solution-processed photodetectors have emerged as promising candidates for next-generation of visible-near infrared (vis-NIR) photodetectors. This is attributed to their ease of processing, compatibility with flexible substrates, and the ability to tune their detection properties by integrating complementary photoresponsive semiconductors. However, the limited performance continues to hinder their further development, primarily influenced by the difference of charge transport properties between perovskite and organic semiconductors. In this work, a perovskite-organic bipolar photodetectors (PDs) is introduced with multispectral responsivity, achieved by effectively managing charges in perovskite and a ternary organic heterojunction. The ternary heterojunction, incorporating a designed NIR guest acceptor, exhibits a faster charge transfer rate and longer carrier diffusion length than the binary heterojunction. By achieving a more balanced carrier dynamic between the perovskite and organic components, the PD achieves a low dark current of 3.74 nA cm at -0.2 V, a fast response speed of <10 µs, and a detectivity of exceeding 10 Jones. Furthermore, a bioinspired retinotopic system for spontaneous chromatic adaptation is achieved without any optical filter. This charge management strategy opens up possibilities for surpassing the limitations of photodetection and enables the realization of high-purity, compact image sensors with exceptional spatial resolution and accurate color reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202309827DOI Listing

Publication Analysis

Top Keywords

perovskite organic
8
charge management
4
management enables
4
enables efficient
4
efficient spontaneous
4
spontaneous chromatic
4
chromatic adaptation
4
adaptation bipolar
4
bipolar photodetector
4
photodetector solution-processed
4

Similar Publications