A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

High-Speed Automated Reconstruction of Drosophila Larval Brain from Volumetric EM Data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To uncover the relationship between neural activity and behavior, it is essential to reconstruct neural circuits. However, methods typically used for neuron reconstruction from volumetric electron microscopy (EM) dataset are often time-consuming and require extensive manual proofreading, making it difficult to reproduce in a typical laboratory setting. To address this challenge, we have developed a set of acceleration techniques that build upon the Flood Filling Network (FFN), significantly reducing the time required for this task. These techniques can be easily adapted to other similar datasets and laboratory settings. To validate our approach, we tested our pipeline on a dataset of Drosophila larval brain serial section EM images at synaptic-resolution level. Our results demonstrate that our pipeline significantly reduces the inference time compared to the FFN baseline method and greatly reduces the time required for reconstructing the 3D morphology of neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340599DOI Listing

Publication Analysis

Top Keywords

drosophila larval
8
larval brain
8
time required
8
high-speed automated
4
automated reconstruction
4
reconstruction drosophila
4
brain volumetric
4
volumetric data
4
data uncover
4
uncover relationship
4

Similar Publications