98%
921
2 minutes
20
Deep learning (DL) has revolutionized the field of artificial intelligence by providing sophisticated models across a diverse range of applications, from image and speech recognition to natural language processing and autonomous driving. However, deep learning models are typically black-box models where the reason for predictions is unknown. Consequently, the reliability of the model becomes questionable in many circumstances. Explainable AI (XAI) plays an important role in improving the transparency and interpretability of the model thereby making it more reliable for real-time deployment. To investigate the reliability and truthfulness of DL models, this research develops image classification models using transfer learning mechanism and validates the results using XAI technique. Thus, the contribution of this research is twofold, we employ three pre-trained models VGG16, MobileNetV2 and ResNet50 using multiple transfer learning techniques for a fruit classification task consisting of 131 classes. Next, we inspect the reliability of models, based on these pre-trained networks, by utilizing Local Interpretable Model-Agnostic Explanations, the LIME, a popular XAI technique that generates explanations for the predictions. Experimental results reveal that transfer learning provides optimized results of around 98% accuracy. The classification of the models is validated on different instances using LIME and it was observed that each model predictions are interpretable and understandable as they are based on pertinent image features that are relevant to particular classes. We believe that this research gives an insight for determining how an interpretation can be drawn from a complex AI model such that its accountability and trustworthiness can be increased.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702969 | PMC |
http://dx.doi.org/10.7717/peerj-cs.1629 | DOI Listing |
EBioMedicine
September 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
J Org Chem
September 2025
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.
The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine.
This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.
View Article and Find Full Text PDF