98%
921
2 minutes
20
Purpose: Radiation-induced lung injury (RILI) is a progressive inflammatory process seen after irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Here, we sought to noninvasively quantify RILI using a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI.
Methods And Materials: Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe, to characterize the development of RILI and to assess disease mitigation after losartan treatment. The human analog probe Ga-CBP8, targeting type 1 collagen, was tested on excised human lung tissue containing RILI and was quantified via autoradiography. Ga-CBP8 positron emission tomography was used to assess RILI in vivo in 6 human subjects.
Results: Murine models demonstrated that probe signal correlated with progressive RILI severity over 6 months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding versus unirradiated control tissue, and Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant Ga-CBP8 uptake in areas of RILI and minimal background uptake.
Conclusions: These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184492 | PMC |
http://dx.doi.org/10.1016/j.ijrobp.2023.11.032 | DOI Listing |
Eur J Nucl Med Mol Imaging
September 2025
Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.
J Am Chem Soc
September 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Understanding how molecular aggregation influences nonlinear optical properties is essential for advancing organic fluorophores in imaging, sensing, and photonic applications. However, the relationship between the molecular aggregation and the magnitude of nonlinear two-photon absorption cross-section remains underexplored. Here, we systematically investigate the aggregation-dependent two-photon absorption properties of the fluorophore TPAPhCN by tuning the degree of aggregation.
View Article and Find Full Text PDFBMJ
September 2025
Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
Objective: To determine the effect of a prepregnancy lifestyle intervention on glucose tolerance in people at higher risk of gestational diabetes mellitus.
Design: Single centre randomised controlled trial (BEFORE THE BEGINNING).
Setting: University hospital in Trondheim, Norway.