98%
921
2 minutes
20
Phytophthora root rot (PRR) is a major constraint to chickpea production in Australia. Management options for controlling the disease are limited to crop rotation and avoiding high risk paddocks for planting. Current Australian cultivars have partial PRR resistance, and new sources of resistance are needed to breed cultivars with improved resistance. Field- and glasshouse-based PRR resistance phenotyping methods are labour intensive, time consuming, and provide seasonally variable results; hence, these methods limit breeding programs' abilities to screen large numbers of genotypes. In this study, we developed a new space saving (400 plants/m), rapid (<12 days), and simplified hydroponics-based PRR phenotyping method, which eliminated seedling transplant requirements following germination and preparation of zoospore inoculum. The method also provided post-phenotyping propagation all the way through to seed production for selected high-resistance lines. A test of 11 diverse chickpea genotypes provided both qualitative (PRR symptoms) and quantitative (amount of pathogen DNA in roots) results demonstrating that the method successfully differentiated between genotypes with differing PRR resistance. Furthermore, PRR resistance hydroponic assessment results for 180 recombinant inbred lines (RILs) were correlated strongly with the field-based phenotyping, indicating the field phenotype relevance of this method. Finally, post-phenotyping high-resistance genotypes were selected. These were successfully transplanted and propagated all the way through to seed production; this demonstrated the utility of the rapid hydroponics method (RHM) for selection of individuals from segregating populations. The RHM will facilitate the rapid identification and propagation of new PRR resistance sources, especially in large breeding populations at early evaluation stages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708383 | PMC |
http://dx.doi.org/10.3390/plants12234069 | DOI Listing |
Front Microbiol
August 2025
Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.
View Article and Find Full Text PDFMicrobiol Res
September 2025
College of Resources and Environmental Science, State Key laboratory of nutrient use and management, China Agricultural University, Beijing 100193, China. Electronic address:
A comprehensive understanding of the interplay between agricultural practices and the rhizosphere microbiome particularly the role of root exudates is essential for harnessing microbial potential in sustainable agriculture. In this study, we investigated how disease-suppressive soil alters root exudate profiles in pepper plants and how these elevated exudates influence rhizosphere microbiome assembly and modulate the antagonistic activity of Bacillus methylotrophicus 400 (BM400) against Phytophthora capsici. GC-MS analysis identified distinct compositional profiles of root exudates in the disease-suppressive soil, with marked enrichment of seven compounds.
View Article and Find Full Text PDFViruses
August 2025
Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
root rot fungi represent a major threat to conifer forest stands, and virocontrol (biocontrol) has been proposed as an alternative strategy of disease management in recent years. Here, we investigated the occurrence of RNA viruses and viroid-like genomes in sensu lato in near-natural forests of Bosnia and Herzegovina (Dinaric Alps), a region previously unexplored in this regard. Seventeen s.
View Article and Find Full Text PDFAnal Methods
August 2025
Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, 2004 Folwell Ave, St. Paul, MN, 55108, USA.
Soybean () production is severely impacted by , the causal agent of Phytophthora root and stem rot, resulting in significant yield losses worldwide. Accurate detection of this pathogen is critical for effective disease management. In this study, we developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the internal transcribed spacer (ITS) region of DNA.
View Article and Find Full Text PDFMicrobiol Res
August 2025
Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Danzhou Invasive Species Observation and Research Station of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China. Electronic address: jk_norvi
Phytophthora capsici is a filamentous oomycete responsible for root rot, fruit rot, leaf blight, and other economically destructive diseases in multiple plant species, including pepper (Capsicum annuum), tomato (Solanum lycopersicum), squash (Cucurbita pepo), eggplant (Solanum melongena), faba bean (Vicia faba), and lima bean (Phaseolus lunatus), among others. The pathogen causes significant yield losses in fruit and vegetable crops globally. Multiple molecular parameters, including effector proteins and epigenetic modulators, play vital roles in modulating the physio pathological development of P.
View Article and Find Full Text PDF