98%
921
2 minutes
20
Spring-assisted posterior vault expansion has been adopted at the London Great Ormond Street Hospital for Children to treat raised intracranial pressure in patients affected by syndromic craniosynostosis, a congenital calvarial anomaly causing the premature fusion of skull sutures. This procedure involves elastic distractors used to dynamically reshape the skull and increase the intracranial volume (ICV). In this study, we developed and validated a patient-specific model able to predict the ICV increase and carried out a parametric study to investigate the effect of surgical parameters on that final volume. Pre- and post-operative computed tomography data relative to 18 patients were processed to extract simplified patient-specific skull shape, replicate surgical cuts, and simulate spring expansion. A parametric study was performed to quantify each parameter's impact on the surgical outcome: for each patient, the osteotomy location was varied in a pre-defined range; local sensitivity of the predicted ICV to each parameter was analysed and compared. Results showed that the finite element model performed well in terms of post-operative ICV prediction and allowed for parametric optimization of surgical cuts. The study indicates how to optimize the ICV increase according to the type of procedure and provides indication on the most robust surgical strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695940 | PMC |
http://dx.doi.org/10.1038/s41598-023-48143-z | DOI Listing |
Ann Biomed Eng
September 2025
Department of Mechanical Engineering, Koc University, Rumeli Feneri Campus, Sarıyer, 34450, Istanbul, Turkey.
Purpose: The design and development of ventricular assist devices have heavily relied on computational tools, particularly computational fluid dynamics (CFD), since the early 2000s. However, traditional CFD-based optimization requires costly trial-and-error approaches involving multiple design cycles. This study aims to propose a more efficient VAD design and optimization framework that overcomes these limitations.
View Article and Find Full Text PDFExp Neurol
September 2025
CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.
Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.
View Article and Find Full Text PDFBioinspir Biomim
September 2025
Mechanical Intelligence (MI) Research Group, London South Bank University, 103 Borough Road, London, London, SE1 0AA, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Conventional rigid grippers remain the most-used robotic grippers in industrial assembly tasks. However, they are limited in their ability to handle a diverse range of objects. This study draws inspiration from nature to address these limitations, employing multidisciplinary methods, such as computer-aided design, parametric modeling, finite element analysis, 3D printing, and mechanical testing.
View Article and Find Full Text PDFInt Arch Allergy Immunol
September 2025
Background: Anaphylaxis is a life-threatening, systemic allergic reaction. This study aims to compare anaphylactic triggers, clinical presentation and management between elderly (≥65 years old) and non-elderly adults.
Methods: Data from the Cross-Canada Anaphylaxis Registry (C-CARE) from April 2011 to May 2024 was collected, spanning five emergency departments (EDs) and one emergency medical service (EMS) across three Canadian provinces.
J Acoust Soc Am
September 2025
Department of Head and Neck Surgery, University of California, Los Angeles, 31-24 Rehab Center, 1000 Veteran Avenue, Los Angeles, California 90095-1794, USA.
The goal of this study was to understand the interaction between the voice source spectral shape, formant tuning, and fundamental frequency in determining the vocal tract contribution to vocal intensity. Computational voice simulations were performed with parametric variations in both vocal fold and vocal tract configurations. The vocal tract contribution to vocal intensity was quantified as the difference in the A-weighted sound pressure level between the radiated sound pressure and the sound pressure at the glottis.
View Article and Find Full Text PDF