98%
921
2 minutes
20
Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited enzymopathy. Identification of the G6PD deficiency through screening is crucial to preventing adverse effects associated with hemolytic anemia following antimalarial drug exposure. Therefore, a rapid and precise field-based G6PD deficiency diagnosis is required, particularly in rural regions where malaria is prevalent. The phenotypic diagnosis of the G6PD intermediate has also been a challenging issue due to the overlapping of G6PD activity levels between deficient and normal individuals, leading to a misinterpretation. The availability of an accurate point-of-care testing (POCT) for genotype diagnosis will therefore increase the opportunity for screening heterozygous cases in a low-resource setting. In this study, an allele-specific recombinase polymerase amplification (AS RPA) with clustered regularly interspaced short palindromic repeats-Cas12a (CRISPR-Cas12a) was developed as a POCT for accurate diagnosis of common mutations in Thailand. The AS primers for the wild type and mutant alleles of and were designed and used in RPA reactions. Following application of CRISPR-Cas12a systems containing specific protospacer adjacent motif, the targeted RPA amplicons were visualized with the naked eye. Results demonstrated that the and assays reached 93.62 and 98.15% sensitivity, respectively. The specificity was 88.71% in and 99.02% in . The diagnosis accuracy of the and assays was 91.67 and 98.72%, respectively. From DNA extraction to detection, the assay required approximately 52 min. In conclusion, this study demonstrated the high performance of an AS RPA with the CRISPR-Cas12a platform for and detection assays and the potential use of genotyping as POCT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688097 | PMC |
http://dx.doi.org/10.1021/acsomega.3c05596 | DOI Listing |
Talanta
August 2025
Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand. Electronic address:
A rapid and automated determination of nicotinamide adenine dinucleotide phosphate (NADPH) is proposed and applied to the evaluation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in real samples. To this end, a sequential injection analyzer with electrochemical detection (SIA-ECD) is proposed with 0.1 mol L Tris-HCl (pH 8.
View Article and Find Full Text PDFDiabetologia
September 2025
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Aims/hypothesis: Glucose 6-phosphate dehydrogenase (G6PD) deficiency, the most common inherited enzymopathy, can affect HbA levels and the diagnosis of type 2 diabetes. This cross-sectional study aimed to investigate the association between G6PD deficiency, its common mutations (G6PD Viangchan, G6PD Mahidol) and HbA levels in a Thai cohort.
Methods: Blood samples from 1007 healthy hospital staff were collected during annual health checkups.
Antioxidants (Basel)
July 2025
Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymatic disorder, affects over 500 million people worldwide and is often linked to exercise intolerance due to oxidative stress, but its true impact on physical performance remains unclear. This study aimed to evaluate the physiological and metabolic effects of G6PD deficiency on endurance capacity. Using humanized mice carrying the African G6PD variant [V68M; N126D] (hG6PD), we show that despite reduced pentose phosphate pathway activity, these mice exhibit a 10.
View Article and Find Full Text PDFChildren (Basel)
August 2025
Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates.
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease of multifactorial etiologies, manifesting as persistent challenges in social interactions, restrictive interests, and repetitive behaviors. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy affecting red blood cell function. Although G6PD enzyme deficiency is known for its role in hemolytic anemia, emerging studies have suggested a potential association between G6PD deficiency and neurodegenerative and neurodevelopmental disorders, including autism.
View Article and Find Full Text PDFBMJ Case Rep
August 2025
Department of Pediatrics, All India Institute of Medical Sciences Mangalagiri (AIIMS), Mangalagiri, Andhra Pradesh, India
A late preterm infant of South Indian ethnicity born of a second-degree consanguineous marriage presented on the fourth day of life with severe neonatal hyperbilirubinaemia (NNH), rapidly progressing to bilirubin encephalopathy. The underlying cause was G6PD deficiency, a significant contributor to severe NNH, especially in late preterm neonates. The infant underwent an urgent double-volume exchange transfusion to manage hyperbilirubinaemia.
View Article and Find Full Text PDF