Exploring the Association Between Glucose-6-Phosphate Dehydrogenase Deficiency and Autism Spectrum Disorder: A Narrative Review.

Children (Basel)

Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disease of multifactorial etiologies, manifesting as persistent challenges in social interactions, restrictive interests, and repetitive behaviors. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy affecting red blood cell function. Although G6PD enzyme deficiency is known for its role in hemolytic anemia, emerging studies have suggested a potential association between G6PD deficiency and neurodegenerative and neurodevelopmental disorders, including autism. This narrative review explores the possible connection between G6PD deficiency and autism by analyzing relevant literature from the PubMed and Scopus databases. Current evidence points to plausible biological links, particularly oxidative stress and folate metabolism, warranting further investigation into G6PD deficiency as a potential risk modifier in ASD. Moreover, further research is necessary to elucidate the nature of this relationship and its implications for clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384057PMC
http://dx.doi.org/10.3390/children12081054DOI Listing

Publication Analysis

Top Keywords

g6pd deficiency
16
glucose-6-phosphate dehydrogenase
8
deficiency autism
8
autism spectrum
8
spectrum disorder
8
narrative review
8
deficiency
6
g6pd
5
exploring association
4
association glucose-6-phosphate
4

Similar Publications

A rapid and automated determination of nicotinamide adenine dinucleotide phosphate (NADPH) is proposed and applied to the evaluation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in real samples. To this end, a sequential injection analyzer with electrochemical detection (SIA-ECD) is proposed with 0.1 mol L Tris-HCl (pH 8.

View Article and Find Full Text PDF

Aims/hypothesis: Glucose 6-phosphate dehydrogenase (G6PD) deficiency, the most common inherited enzymopathy, can affect HbA levels and the diagnosis of type 2 diabetes. This cross-sectional study aimed to investigate the association between G6PD deficiency, its common mutations (G6PD Viangchan, G6PD Mahidol) and HbA levels in a Thai cohort.

Methods: Blood samples from 1007 healthy hospital staff were collected during annual health checkups.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymatic disorder, affects over 500 million people worldwide and is often linked to exercise intolerance due to oxidative stress, but its true impact on physical performance remains unclear. This study aimed to evaluate the physiological and metabolic effects of G6PD deficiency on endurance capacity. Using humanized mice carrying the African G6PD variant [V68M; N126D] (hG6PD), we show that despite reduced pentose phosphate pathway activity, these mice exhibit a 10.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex neurodevelopmental disease of multifactorial etiologies, manifesting as persistent challenges in social interactions, restrictive interests, and repetitive behaviors. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy affecting red blood cell function. Although G6PD enzyme deficiency is known for its role in hemolytic anemia, emerging studies have suggested a potential association between G6PD deficiency and neurodegenerative and neurodevelopmental disorders, including autism.

View Article and Find Full Text PDF

A late preterm infant of South Indian ethnicity born of a second-degree consanguineous marriage presented on the fourth day of life with severe neonatal hyperbilirubinaemia (NNH), rapidly progressing to bilirubin encephalopathy. The underlying cause was G6PD deficiency, a significant contributor to severe NNH, especially in late preterm neonates. The infant underwent an urgent double-volume exchange transfusion to manage hyperbilirubinaemia.

View Article and Find Full Text PDF