98%
921
2 minutes
20
Although immune checkpoint inhibition (ICI) has produced profound survival benefits in a broad variety of tumors, a proportion of patients do not respond. Treatment failure is in part due to immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, we developed a vesicular stomatitis virus expressing interferon-ß (VSV-IFNß) as a viro-immunotherapy against HCC. Since HCC standard of care atezolizumab/bevacizumab incorporates ICI, we tested the hypothesis that pro-inflammatory VSV-IFNß would recruit, prime, and activate anti-tumor T cells, whose activity anti-PD-L1 ICI would potentiate. However, in a partially anti-PD-L1-responsive model of HCC, addition of VSV-IFNß abolished anti-PD-L1 therapy. Cytometry by Time of Flight showed that VSV-IFNß expanded dominant anti-viral effector CD8 T cells with concomitant, relative disappearance of anti-tumor T cell populations which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, the potent anti-viral response became amalgamated with an anti-tumor T cell response generating highly significant cures compared to anti-PD-L1 ICI alone. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, by chimerizing anti-viral and anti-tumor T cell responses through encoding tumor antigens within the virus, oncolytic virotherapy can be purposed for very effective immune driven tumor clearance and can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690324 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-3576281/v1 | DOI Listing |
Cancer Res Commun
September 2025
Fred Hutchinson Cancer Center, Seattle, WA, United States.
Metastatic and relapsed osteosarcoma (OS) remains difficult to treat despite advanced surgical techniques, intensified chemotherapy, and targeted therapies. Adoptive immunotherapies such as chimeric antigen receptor (CAR) T cells, are in their nascent stage, but remain a viable therapeutic strategy for patients with aggressive solid tumors such as OS. Folate receptor- (FOLR1) has been functionally implicated in OS pathophysiology, providing rationale as a potential therapeutic target.
View Article and Find Full Text PDFInt J Pharm X
December 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Bispecific T-cell engagers (BiTEs) are small-molecule antibodies that exhibits potent tumoricidal activity but suffer from a short plasma half-life. Mesenchymal stromal cells (MSCs) represent promising delivery vehicles for sustained therapeutic protein expression. In this study, we used human umbilical cord blood-MSCs (hUC-MSCs) as a delivery system to to secrete HER2/CD3 BiTE antibodies, thereby addressing the pharmacokinetic limitations of conventional BiTE therapies.
View Article and Find Full Text PDFRSC Med Chem
September 2025
College of Pharmacy, Guangxi Innovation Center of Zhuang Yao Medicine, Guangxi University of Chinese Medicine Nanning 530200 P. R. of China
Challenges in cancer treatment lie in the identification and development of novel agents with potent anti-tumor activity. A series of novel dehydroabietylamine-pyrimidine derivatives 3a-3s were designed and synthesized based on the principles of molecular hybridization. The inhibitory activities of the target compounds against the proliferation of four different human cancer cell lines (HepG2, A549, HCT116 and MCF-7) were evaluated.
View Article and Find Full Text PDFRep Pract Oncol Radiother
August 2025
Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India.
Long non-coding ribonucleic acids (lncRNAs) form a subclass of non-coding RNAs (ncRNAs), they are quite long and as their name non-coding suggests they do not have a role in protein coding. lncRNAs are vital in all the key steps of tumorigenesis, such as epithelial-mesenchymal transition, cancer stem cells formation, invasion, migration, and formation of the tumor vasculature. lncRNAs are classified into oncogenic or anti-tumor lncRNAs based on their functions.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Ultrasonic Imaging, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China.
Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.
View Article and Find Full Text PDF