Evaluation of Climate-Aware Metrics Tools for Radiology Informatics and Artificial Intelligence: Toward a Potential Radiology Ecolabel.

J Am Coll Radiol

University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland; Vice Chair, Program Planning Committee, Society for Imaging Informatics in Medicine; and Associate Editor of Radiology: Artificial Intelligenc

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiology is a major contributor to health care's impact on climate change, in part due to its reliance on energy-intensive equipment as well as its growing technological reliance. Delivering modern patient care requires a robust informatics team to move images from the imaging equipment to the workstations and the health care system. Radiology informatics is the field that manages medical imaging IT. This involves the acquisition, storage, retrieval, and use of imaging information in health care to improve access and quality, which includes PACS, cloud services, and artificial intelligence. However, the electricity consumption of computing and the life cycle of various computer components expands the carbon footprint of health care. The authors provide a general framework to understand the environmental impact of clinical radiology informatics, which includes using the international Greenhouse Gas Protocol to draft a definition of scopes of emissions pertinent to radiology informatics, as well as exploring existing tools to measure and account for these emissions. A novel standard ecolabel for radiology informatics tools, such as the Energy Star label for consumer devices or Leadership in Energy and Environmental Design certification for buildings, should be developed to promote awareness and guide radiologists and radiology informatics leaders in making environmentally conscious decisions for their clinical practice. At this critical climate juncture, the radiology community has a unique and pressing obligation to consider our shared environmental responsibility in innovating clinical technology for patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacr.2023.11.019DOI Listing

Publication Analysis

Top Keywords

radiology informatics
24
health care
12
radiology
9
ecolabel radiology
8
patient care
8
informatics
7
care
5
evaluation climate-aware
4
climate-aware metrics
4
metrics tools
4

Similar Publications

Introduction: The role of imaging in radiotherapy is becoming increasingly important. Verification of imaging parameters prior to treatment planning is essential for safe and effective clinical practice.

Methods: This study described the development and clinical implementation of ImageCompliance, an automated, GUI-based script designed to verify and enforce correct CT and MRI parameters during radiotherapy planning.

View Article and Find Full Text PDF

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF

Dysregulated dopaminergic signaling has been implicated in the pathophysiology of major depressive disorder (MDD) and childhood sexual abuse (CSA), but inconsistencies abound. In a multimodal PET-functional MRI study, harnessing the highly selective tracer [C]altropane, we investigated dopamine transporter availability (DAT) and resting-state functional connectivity (rsFC) within reward-related regions among 112 unmedicated individuals (MDD: n = 37, MDD/CSA: n = 18; CSA no MDD: n = 14; controls: n = 43). Striatal DAT and seed-based rsFC were assessed in the dorsal and ventral striatum and the ventral tegmental area.

View Article and Find Full Text PDF

Despite the rapid growth of Food and Drug Administration-cleared artificial intelligence (AI)- and machine learning-enabled medical devices for use in radiology, current tools remain limited in scope, often focusing on narrow tasks and lacking the ability to comprehensively assist radiologists. These narrow AI solutions face limitations in financial sustainability, operational efficiency, and clinical utility, hindering widespread adoption and constraining their long-term value in radiology practice. Recent advances in generative and multimodal AI have expanded the scope of image interpretation, prompting discussions on the development of generalist medical AI.

View Article and Find Full Text PDF