98%
921
2 minutes
20
Fluid flow behavior is visualized through particle image velocimetry (PIV) for understanding and studying experimental fluid dynamics. However, traditional PIV methods require multiple cameras and conventional lens systems for image acquisition to resolve multi-dimensional velocity fields. In turn, it introduces complexity to the entire system. Meta-lenses are advanced flat optical devices composed of artificial nanoantenna arrays. It can manipulate the wavefront of light with the advantages of ultrathin, compact, and no spherical aberration. Meta-lenses offer novel functionalities and promise to replace traditional optical imaging systems. Here, a binocular meta-lens PIV technique is proposed, where a pair of GaN meta-lenses are fabricated on one substrate and integrated with a imaging sensor to form a compact binocular PIV system. The meta-lens weigh only 116 mg, much lighter than commercial lenses. The 3D velocity field can be obtained by the binocular disparity and particle image displacement information of fluid flow. The measurement error of vortex-ring diameter is ≈1.25% experimentally validates via a Reynolds-number (Re) 2000 vortex-ring. This work demonstrates a new development trend for the PIV technique for rejuvenating traditional flow diagnostic tools toward a more compact, easy-to-deploy technique. It enables further miniaturization and low-power systems for portable, field-use, and space-constrained PIV applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202310134 | DOI Listing |
JTCVS Open
August 2025
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
Objectives: Left ventricular vortex dynamics play a crucial role in cardiac function but are significantly altered by mitral valve diseases or surgical interventions. Such hemodynamic changes may lead to maladaptive intracardiac vortices, potentially triggering pathways associated with progressive left ventricular remodeling and thrombosis. This study assessed left ventricular hemodynamics under both physiological and pathological conditions using a biohybrid in vitro platform, aiming to analyze the impact of these conditions on cardiac function.
View Article and Find Full Text PDFJ Occup Environ Hyg
September 2025
Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.
This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.
The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.
View Article and Find Full Text PDFTurk J Pharm Sci
September 2025
Drugs Testing Laboratory, Department of Drugs Control, Bangalore, India.
Objectives: The study aimed to combine instant-release and mini-tablet methodologies to develop novel orally disintegrating mini-tablets (ODMTs) for a frequently pescribed antibiotic, cefixime trihydrate (CT), in paediatric patients.
Materials And Methods: CT-loaded microcapsules were prepared using Eudragit EPO and Hydroxy Propyl Methyl Cellulose E50 by spray drying technique. The optimized microcapsules were mixed with co-processed ready-to-use tableting excipients, Ludiflash and Pearlitol 200SD, in different proportions and then compressed into ODMTs and evaluated.