Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Denitrification in oxic environments occurs when a microorganism uses nitrogen oxides as terminal electron acceptors even though oxygen is available. While this phenomenon is well-established, its consequences on ecological and evolutionary processes remain poorly understood. We hypothesize here that denitrification in oxic environments can modify the accumulation profiles of nitrogen oxide intermediates with cascading effects on the evolutionary potentials of denitrifying microorganisms. To test this, we performed laboratory experiments with Paracoccus denitrificans and complemented them with individual-based computational modelling. We found that denitrification in low oxic environments significantly increases the accumulation of nitrite and nitric oxide. We further found that the increased accumulation of these intermediates has a negative effect on growth at low pH. Finally, we found that the increased negative effect at low pH increases the number of individuals that contribute to surface-associated growth. This increases the amount of genetic diversity that is preserved from the initial population, thus increasing the number of genetic targets for natural selection to act upon and resulting in higher evolutionary potentials. Together, our data highlight that denitrification in low oxic environments can affect the ecological processes and evolutionary potentials of denitrifying microorganisms by modifying the accumulation of nitrogen oxide intermediates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866065PMC
http://dx.doi.org/10.1111/1758-2229.13221DOI Listing

Publication Analysis

Top Keywords

oxic environments
20
denitrification low
12
low oxic
12
nitrogen oxide
12
oxide intermediates
12
evolutionary potentials
12
environments increases
8
increases accumulation
8
accumulation nitrogen
8
denitrification oxic
8

Similar Publications

Surveillance monitoring of shallow groundwater revealed that redox conditions can vary on a small scale. Therefore, the aim of this study was to categorize redox conditions in the groundwater of Lower Saxony, Germany, and to analyze the spatial distribution and trends of parameters related to redox conditions during surveillance monitoring from 1957 to 2015 in Lower Saxony, Germany. Methodically, trends were considered by applying the Mann-Kendall test and redox conditions of groundwater were classified according to the scheme of Jurgens et al.

View Article and Find Full Text PDF

Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial.

View Article and Find Full Text PDF

Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.

View Article and Find Full Text PDF

Mutualistic endosymbiosis is a cornerstone of evolutionary innovation, enabling organisms to exploit diverse niches unavailable to individual species. However, our knowledge about the early evolutionary stage of this relationship remains limited. The association between the ciliate Tetrahymena utriculariae and its algal endosymbiont Micractinium tetrahymenae indicates an incipient stage of photoendosymbiosis.

View Article and Find Full Text PDF

Optimal low-frequency mechanical vibration enhances extracellular polymeric substances-mediated phosphorus removal in biological systems.

Water Res

August 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.

The biological phosphorus removal (BPR) process relies on frequent phosphorus exchange between functional microorganisms and their surrounding environment. However, limited mass transfer restricts the overall phosphorus removal efficiency. In this study, low-frequency mechanical vibration (LFMV) was introduced into the anaerobic/oxic reactors.

View Article and Find Full Text PDF