Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Astrocytes are a heterogeneous population of central nervous system glial cells that respond to pathological insults and injury by undergoing a transformation called "reactivity." Reactive astrocytes exhibit distinct and context-dependent cellular, molecular, and functional state changes that can either support or disturb tissue homeostasis. We recently identified a reactive astrocyte sub-state defined by interferon-responsive genes like Igtp, Ifit3, Mx1, and others, called interferon-responsive reactive astrocytes (IRRAs). To further this transcriptomic definition of IRRAs, we wanted to define the proteomic changes that occur in this reactive sub-state. We induced IRRAs in immunopanned rodent astrocytes and human iPSC-differentiated astrocytes using TNF, IL1α, C1Q, and IFNβ and characterized their proteomic profile (both cellular and secreted) using unbiased quantitative proteomics. We identified 2335 unique cellular proteins, including IFIT2/3, IFITM3, OASL1/2, MX1/2/3, and STAT1. We also report that rodent and human IRRAs secrete PAI1, a serine protease inhibitor which may influence reactive states and functions of nearby cells. Finally, we evaluated how IRRAs are distinct from neurotoxic reactive astrocytes (NRAs). While NRAs are described by expression of the complement protein C3, it was not upregulated in IRRAs. Instead, we found ~90 proteins unique to IRRAs not identified in NRAs, including OAS1A, IFIT3, and MX1. Interferon signaling in astrocytes is critical for the antiviral immune response and for regulating synaptic plasticity and glutamate transport mechanisms. How IRRAs contribute to these functions is unknown. This study provides the basis for future experiments to define the functional roles of IRRAs in the context of neurodegenerative disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843807PMC
http://dx.doi.org/10.1002/glia.24494DOI Listing

Publication Analysis

Top Keywords

reactive astrocytes
16
irras
9
interferon-responsive reactive
8
astrocytes
8
rodent human
8
ifit3 mx1
8
reactive
7
proteomic profiling
4
profiling interferon-responsive
4
astrocytes rodent
4

Similar Publications

Reactive astrogliosis and microgliosis in animal models of focally induced seizures: A systematic review and multivariate multilevel meta-analysis.

Epilepsy Behav

September 2025

Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Einstein Center for Neurosciences (ECN), Charité - Universitätsmedizin Berlin, Germany. Electronic address:

Reactive astrogliosis and microgliosis are hallmarks of various central nervous system (CNS) diseases, including epilepsy. Both are observed following seizures in various models of epilepsy. We conducted a systematic meta-analysis to synthesize current knowledge on reactive astrogliosis and microgliosis in animal models involving experimentally induced seizures using a multilevel approach to analyze 260 comparisons from 52 studies.

View Article and Find Full Text PDF

Purpose: Astrocyte reactivation can be assessed using positron emission tomography (PET) ligands targeting monoamine oxidase B (MAO-B). C-SL25.1188 binds reversibly to MAO-B, allowing precise density measurements, but requires invasive arterial sampling.

View Article and Find Full Text PDF

Introduction: Glial fibrillary acidic protein (GFAP) may contribute to Alzheimer's pathology at early disease stages. GFAP moderation of Alzheimer's disease (AD)-related neurodegeneration and cognition is unclear.

Methods: We examined plasma GFAP moderation of AD biomarkers (amyloid beta [Aβ]-positron emission tomography [PET][A]; plasma phosphorylated tau-181 [p-tau181][T]), neurodegeneration (plasma NfL[N]; structural magnetic resonance imaging [MRI][N]), and cognition (Cog; Cog) in two cohorts: University of California San Francisco (UCSF) (N = 212, 91.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage leads to significant morbidity and mortality due to primary mechanical and secondary neurotoxic injury to brain parenchyma. Timing of surgical evacuation to ensure optimal outcomes is controversial, with recent evidence suggesting early intervention improves functional outcome. Here, we characterize the impact of blood-induced secondary injury on diverse brain cell types in a scalable organoid model of intracerebral hemorrhage.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived neural stem/progenitor cells are used in cell-replacement and regenerative therapeutic strategies after traumatic central nervous system injury. Traumatic injury alters the host microenvironment, which in turn affects the functionality of transplanted human neural stem/ progenitor cells and potentially limits their benefits for neurorepair. However, the underlying mechanisms through which the host environment alters the fate and functionality of transplanted human neural stem/progenitor cells remain poorly understood.

View Article and Find Full Text PDF