Publications by authors named "David Labib"

Astrocytes are a heterogeneous population of central nervous system glial cells that respond to pathological insults and injury by undergoing a transformation called "reactivity." Reactive astrocytes exhibit distinct and context-dependent cellular, molecular, and functional state changes that can either support or disturb tissue homeostasis. We recently identified a reactive astrocyte sub-state defined by interferon-responsive genes like Igtp, Ifit3, Mx1, and others, called interferon-responsive reactive astrocytes (IRRAs).

View Article and Find Full Text PDF

Macroglia (astrocytes and oligodendrocytes) are required for normal development and function of the central nervous system, yet many questions remain about their emergence during the development of the brain and spinal cord. Here we used single-cell/single-nucleus RNA sequencing (scRNA-seq/snRNA-seq) to analyze over 298,000 cells and nuclei during macroglia differentiation from mouse embryonic and human-induced pluripotent stem cells. We computationally identify candidate genes involved in the fate specification of glia in both species and report heterogeneous expression of astrocyte surface markers across differentiating cells.

View Article and Find Full Text PDF

Phagocytic clearance of degenerating neurons is triggered by "eat-me" signals exposed on the neuronal surface. The conserved neuronal eat-me signal phosphatidylserine (PS) and the engulfment receptor Draper (Drpr) mediate phagocytosis of degenerating neurons in . However, how PS is recognized by Drpr-expressing phagocytes in vivo remains poorly understood.

View Article and Find Full Text PDF

Astrocytes respond to injury, infection, and inflammation in the central nervous system by acquiring reactive states in which they may become dysfunctional and contribute to disease pathology. A sub-state of reactive astrocytes induced by proinflammatory factors TNF, IL-1α, and C1q ("TIC") has been implicated in many neurodegenerative diseases as a source of neurotoxicity. Here, we used an established human induced pluripotent stem cell (hiPSC) model to investigate the surface marker profile and proteome of TIC-induced reactive astrocytes.

View Article and Find Full Text PDF

During prolonged nutrient restriction, developing animals redistribute vital nutrients to favor brain growth at the expense of other organs. In , such brain sparing relies on a glia-derived growth factor to sustain proliferation of neural stem cells. However, whether other aspects of neural development are also spared under nutrient restriction is unknown.

View Article and Find Full Text PDF