Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/aim: In this study, we used an orthotropic breast cancer model combined with ketamine addiction and next-generation sequencing (NGS) to comprehensively investigate molecular alterations in ketamine-mediated metastasis. Ketamine is widely used in anesthesia and drug abuse. Our previous study revealed that ketamine promotes the growth of breast cancer cells; however, the detailed molecular mechanism remains unknown.

Materials And Methods: An orthotropic breast cancer model was established by injecting EO771 breast cancer cells into the mammary fat pad of mice intraperitoneally administered ketamine (30 mg/kg, daily) for 68 days. Tumors collected at day 38 were frozen for future analysis, and their metastasis state was checked at day 68.

Results: Tumors were grouped and subjected to NGS analysis, followed by differential gene expression analysis (DEseq) and pathway identification. DEseq analysis showed that ketamine up-regulated metastasis-related signaling, and the key genes were BMP5, FZD6, MMP1B, EGFR, WNT5A, BMP7, and DCN.

Conclusion: Ketamine addiction up-regulates the expression of genes involved in the Wnt, EGFR, and BMP signaling cascades, which may be associated with breast cancer progression and metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.16745DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
orthotropic breast
8
cancer model
8
ketamine addiction
8
cancer cells
8
ketamine
7
breast
6
cancer
6
ketamine promoted
4
promoted breast
4

Similar Publications

Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.

View Article and Find Full Text PDF

Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.

View Article and Find Full Text PDF

Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.

View Article and Find Full Text PDF