Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In the aftermaths of global warming, plants are more frequently exposed to the combination of heat stress and drought in natural conditions. Jasmonic acid (JA) has been known to modulate numerous plant adaptive responses to diverse environmental stresses. However, the function of JA in regulating plant responses to the combined effects of heat and drought remains underexplored. In this study, we elucidated the functions of JA in enhancing the combined heat and drought tolerance of soybean (Glycine max). Our results showed that priming with JA improved plant biomass, photosynthetic efficiency and leaf relative water content, which all together contributed to the improved performance of soybean plants under single and combined heat and drought conditions. Exposure to single and combined heat and drought conditions caused oxidative damage in soybean leaves. Priming soybean plants, which were exposed to single and combined heat and drought conditions, with JA, on the other hand, substantially quenched the reactive oxygen species-induced oxidative burden possibly by bolstering their antioxidant defense system. Together, our findings provide direct evidence of the JA-mediated protective mechanisms in maintaining the optimal photosynthetic rate and plant performance under combined heat and drought conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.108193 | DOI Listing |