98%
921
2 minutes
20
Deforestation has contributed significantly to net greenhouse gas emissions, but slowing deforestation, regrowing forests and other ecosystem processes have made forests a net sink. Deforestation will still influence future carbon fluxes, but the role of forest growth through aging, management, and other silvicultural inputs on future carbon fluxes are critically important but not always recognized by bookkeeping and integrated assessment models. When projecting the future, it is vital to capture how management processes affect carbon storage in ecosystems and wood products. This study uses multiple global forest sector models to project forest carbon impacts across 81 shared socioeconomic (SSP) and climate mitigation pathway scenarios. We illustrate the importance of modeling management decisions in existing forests in response to changing demands for land resources, wood products and carbon. Although the models vary in key attributes, there is general agreement across a majority of scenarios that the global forest sector could remain a carbon sink in the future, sequestering 1.2-5.8 GtCO2e/yr over the next century. Carbon fluxes in the baseline scenarios that exclude climate mitigation policy ranged from -0.8 to 4.9 GtCO2e/yr, highlighting the strong influence of SSPs on forest sector model estimates. Improved forest management can jointly increase carbon stocks and harvests without expanding forest area, suggesting that carbon fluxes from managed forests systems deserve more careful consideration by the climate policy community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631560 | PMC |
http://dx.doi.org/10.1016/j.gloenvcha.2022.102582 | DOI Listing |
mSystems
September 2025
Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, USA.
is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China. Electronic address:
Aerogels are widely used in environmental remediation, but their application is hindered by brittleness, limited oil absorption and poor separation of viscous crude oil. In this study, a multifunctional superhydrophobic aerogel with electrothermal and photothermal effects was prepared from bacterial cellulose (BC), methyltrimethoxysilane (MTMS), and hydroxylated carbon nanotubes (HCNT) by soft-hard synergistic and directed freezing. The prepared aerogel exhibited an oriented layered porous structure with excellent compressibility and oil retention capacity.
View Article and Find Full Text PDFEnviron Res
September 2025
Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research
The expansion of floriculture has increased the need for sustainable floral waste management to support agricultural carbon neutrality. This study assessed the impact of carnation, lily, and rose straw amendments (with varying C/N ratios, lignin, and cellulose) on GHG emissions and soil quality with earthworm (Eisenia fetida). Controlled microcosm experiments were conducted to examine the effects of straw types and earthworms on CO and NO fluxes, as well as soil properties, enzyme activities, and microbial functions.
View Article and Find Full Text PDFOecologia
September 2025
Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de La Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), 9000, Comodoro Rivadavia, Argentina.
Under the scenario of global warming, the response of carbon (C) fluxes of arid and semi-arid ecosystems, is still not well understood. A field warming experiment using open top chambers (OTCs) was conducted in a shrub-grass patagonian steppe to evaluate the effects on bare soil respiration (R), and ecosystem respiration (R), gross primary productivity (GPP) and net C exchange (NEE) during the growing season. Air (T) and soil (T) temperature, and soil available phosphorus changed significantly while there were no changes in soil moisture, soil organic carbon, total soil nitrogen and root biomass, after one-year of treatment.
View Article and Find Full Text PDFSerpentinites, hydrated ultramafic rocks that produce [hyper]alkaline, reducing, H2-rich groundwaters, host subsurface microbial ecosystems. Though in the presence of enormous reducing power, life in serpentinizing systems is limited by oxidant and carbon availability. The forms of carbon that support the serpentinite-hosted microbiome, and their rates of biological assimilation, remain poorly understood.
View Article and Find Full Text PDF