Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pulmonary arterial hypertension (PAH) is a progressive disease that affects both the lungs and heart. Right ventricle (RV) hypertrophy is a primary pathological feature of PAH; however, its underlying molecular mechanisms remain insufficiently studied. In this study, we employed tandem mass tag (TMT)-based quantitative proteomics for the integrative analysis of the proteome and phosphoproteome of the RV derived from monocrotaline-induced PAH model rats. Compared with control samples, 564 significantly upregulated proteins, 616 downregulated proteins, 622 downregulated phosphopeptides, and 683 upregulated phosphopeptides were identified ( < 0.05, abs (log (fold change)) > log 1.2) in the MCT samples. The quantitative real-time polymerase chain reaction (qRT-PCR) validated the expression levels of top 20 significantly altered proteins, including Nppa (natriuretic peptides A), latent TGF-β binding protein 2 (Ltbp2), periostin, connective tissue growth factor 2 (Ccn2), Ncam1 (neural cell adhesion molecule), quinone reductase 2 (Nqo2), and tropomodulin 4 (Tmod4). Western blotting confirmed the upregulation of Ncam1 and downregulation of Nqo2 and Tmod4 in both MCT-induced and hypoxia-induced PH rat models. Pathway enrichment analyses indicated that the altered proteins are associated with pathways, such as vesicle-mediated transport, actin cytoskeleton organization, TCA cycle, and respiratory electron transport. These significantly changed phosphoproteins were enriched in pathways such as diabetic cardiomyopathy, hypertrophic cardiomyopathy, glycolysis/gluconeogenesis, and cardiac muscle contraction. In summary, this study provides an initial analysis of the RV proteome and phosphoproteome in the progression of PAH, highlighting several RV dysfunction-associated proteins and pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.3c00546DOI Listing

Publication Analysis

Top Keywords

analysis proteome
8
proteome phosphoproteome
8
altered proteins
8
proteins
5
proteomic phosphoproteomic
4
phosphoproteomic analysis
4
analysis ventricular
4
ventricular hypertrophy
4
hypertrophy pulmonary
4
pulmonary hypertension
4

Similar Publications

Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.

Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.

View Article and Find Full Text PDF

Background And Aims: Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), remain heterogeneous disorders with variable response to biologics. Post-operative recurrence in CD is common despite surgery and prophylactic biotherapies. Understanding the inflammatory mediators associated with recurrence and treatment response could pave the way for personalized strategies.

View Article and Find Full Text PDF

The etiology of uveitis, choroid inflammation, is diverse, the disease is often recurrent, difficult to treat, and frequently results in disability at a young age. Studies investigating the tear fluid composition in uveitis have revealed promising biomarkers relevant for prognosis and treatment optimization. This review presents literature data on changes in the tear fluid content of proteins involved in local immune responses, intercellular interactions, proteolytic and free radical processes, nitric oxide metabolism, and other metabolic pathways in different forms of uveitis.

View Article and Find Full Text PDF

Using BONCAT to dissect the proteome of persisters.

mSphere

September 2025

Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.

Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.

View Article and Find Full Text PDF

Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.

View Article and Find Full Text PDF