Fat Biology in Triple-Negative Breast Cancer: Immune Regulation, Fibrosis, and Senescence.

J Obes Metab Syndr

Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obesity, now officially recognized as a disease requiring intervention, has emerged as a significant health concern due to its strong association with elevated susceptibility to diverse diseases and various types of cancer, including breast cancer. The link between obesity and cancer is intricate, with obesity exerting a significant impact on cancer recurrence and elevated mortality rates. Among the various subtypes of breast cancer, triple-negative breast cancer (TNBC) is the most aggressive, accounting for 15% to 20% of all cases. TNBC is characterized by low expression of estrogen receptors and progesterone receptors as well as the human epidermal growth factor 2 receptor protein. This subtype poses distinct challenges in terms of treatment response and exhibits strong invasiveness. Furthermore, TNBC has garnered attention because of its association with obesity, in which excess body fat and reduced physical activity have been identified as contributing factors to the increased incidence of this aggressive form of breast cancer. In this comprehensive review, the impact of obesity on TNBC was explored. Specifically, we focused on the three key mechanisms by which obesity affects TNBC development and progression: modification of the immune profile, facilitation of fibrosis, and initiation of senescence. By comprehensively examining these mechanisms, we illuminated the complex interplay between TNBC and obesity, facilitating the development of novel approaches for prevention, early detection, and effective management of this challenging disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786212PMC
http://dx.doi.org/10.7570/jomes23044DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
triple-negative breast
8
cancer
8
obesity tnbc
8
obesity
7
tnbc
6
breast
5
fat biology
4
biology triple-negative
4
cancer immune
4

Similar Publications

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

Nitric oxide (NO) is a multifunctional signaling molecule in oncology, influencing tumor progression, apoptosis, and immune responses. In contrast, chlorambucil (Cbl), a DNA-alkylating chemotherapeutic, induces cytotoxicity through DNA damage. Here, we report a photoresponsive nanoparticle platform for sequential codelivery of NO and Cbl, where NO is released within 10 min of irradiation, followed by Cbl release within 30 min.

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is a rare neurological disorder caused by tumor-mediated antibodies targeting the cerebellum, often leading to irreversible cerebellar damage. The most common antibody implicated in PCD is anti-Purkinje cell cytoplasmic antibody type-1, associated with malignancies such as breast, gynecological, and lung cancers. Symptoms often include dizziness, imbalance, progressive ataxia, and other cerebellar signs/symptoms, but early presentations may mimic acute vestibular syndrome, thus complicating diagnosis.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF