Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological insights often depend on comparing conditions such as disease and health, yet we lack effective computational tools for integrating single-cell genomics data across conditions or characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep generative model that characterizes derailed cell-state trajectories. Decipher jointly models and visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680623PMC
http://dx.doi.org/10.1101/2023.11.11.566719DOI Listing

Publication Analysis

Top Keywords

cell states
8
states decipher
8
joint representation
4
representation visualization
4
visualization derailed
4
derailed cell
4
decipher biological
4
biological insights
4
insights depend
4
depend comparing
4

Similar Publications

Refractory cytomegalovirus (CMV) infection is a severe complication following umbilical cord blood transplantation (UCBT). Antiviral agents, the standard first-line therapy, are limited by toxicity and resistance without robust T-cell immunity. We evaluated third-party donor (TPD)-derived CMV-specific T cells (CMVSTs) as a treatment option.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.

View Article and Find Full Text PDF

Background: There is increasing interest in using patient-reported outcome measures (PROMs) to assess quality of life (QoL) following hematopoietic cell transplant (HCT). However, there is limited consensus on how such data should be collected within HCT services. This survey study investigated health professionals (HCPs) views towards QoL data collection and factors affecting the use of PROMs within HCT centres in the UK.

View Article and Find Full Text PDF

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF