Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug resistance is a common cause of therapy failure in head and neck squamous cell carcinoma (HNSCC). One approach to tackling it is by targeting fundamental cellular processes, such as translation. The eukaryotic translation initiation factor 2α (EIF2α) is a key player in canonical translation initiation and integrates diverse stress signals; when phosphorylated, it curbs global protein synthesis. This study evaluates EIF2α expression and phosphorylation in HNSCC. A small-molecule inhibitor of EIF2α dephosphorylation, salubrinal, was tested in vitro, followed by viability assays, flow cytometry, and immunoblot analyses. Patient-derived 3D tumor spheres (PD3DS) were cultured with salubrinal and their viability assessed. Lastly, salubrinal was evaluated with standard-of-care chemotherapeutics. Our analysis of RNA and proteomics data shows elevated EIF2α expression in HNSCC. Immunohistochemical staining reveals increasing EIF2α abundance from premalignant lesions to invasive and metastatic carcinoma. In immunoblots from intraoperative samples, EIF2α expression and steady-state phosphorylation are higher in HNSCC than in neighboring normal tissue. Inhibition of EIF2α dephosphorylation decreases HNSCC cell viability and clonogenic survival and impairs the G/S transition. Salubrinal also decreases the viability of PD3DS and acts synergistically with cisplatin, 5-fluorouracil, bleomycin, and proteasome inhibitors. Our results indicate that pharmacological inhibition of EIF2α dephosphorylation is a potential therapeutic strategy for HNSCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670742PMC
http://dx.doi.org/10.3390/cancers15225350DOI Listing

Publication Analysis

Top Keywords

eif2α dephosphorylation
16
inhibition eif2α
12
eif2α expression
12
dephosphorylation decreases
8
cell viability
8
standard-of-care chemotherapeutics
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8

Similar Publications

Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.

Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.

View Article and Find Full Text PDF

Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.

View Article and Find Full Text PDF

Bacoside A (BCA), a triterpenoid saponin isolated from Bacopa monnieri, exhibits diverse pharmacological properties, including neuroprotective, hepatoprotective, anti-stress, anti-inflammatory, and anti-ulcer effects. In the present study, BCA demonstrates pronounced anticancer activity against K562 chronic myelogenous leukemia (CML) cells by modulating autophagy-apoptosis dynamics. BCA induces dose- and time-dependent cytotoxicity in K562 cells while sparing normal human peripheral blood mononuclear cells (hPBMCs) and Vero cells, indicating therapeutic selectivity.

View Article and Find Full Text PDF

Trehalose 6-phosphate - a central regulator at the crossroads of sugar signalling, metabolism, and development.

New Phytol

September 2025

Institute of Plant Biochemistry and Cluster of Excellences on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Düsseldorf, 40225, Germany.

In mammals, blood sugar levels are tightly controlled by two hormones: insulin and glucagon. In flowering plants, a comparable regulatory mechanism exists, mediated by the sugar-signalling molecule trehalose 6-phosphate (Tre6P). Similar to insulin, Tre6P functions as a signal and negative feedback regulator of sucrose, the main transport sugar in vascular plants.

View Article and Find Full Text PDF

, a macrophage-residing parasite, expresses virulence factors that intercept macrophage signaling and inflicts leishmaniasis. Recently described virulence factors- eEF-1α (eukaryotic elongation factor), LmjF_36_3850 ( F_36_3850), LdTyrPIP_22 (LDBPK_220120.1) and LmjMAPK ( mitogen activated protein kinase)-4/12 selectively modulate the activities of kinases, phosphatases and metabolism of phosphatidylinositol influencing the infection outcome.

View Article and Find Full Text PDF