98%
921
2 minutes
20
Although graphene and graphene-based materials (GBMs) offer a wide range of possible applications, interest in their use as barrier layers or as reinforcements in coatings for the mitigation of corrosion has grown during the past decade. Because of its unique two-dimensional nanostructure and exceptional physicochemical characteristics, graphene has gotten a lot of attention as an anti-corrosion material. This enthusiasm is largely driven by the requirement to integrate more features, improve anti-corrosion effectiveness, and eventually prolong the service duration of metallic components. As barriers against metal corrosion, graphene nanosheets can be applied singly or in combination to create thin films, layered frameworks, or composites. Concurrently, over the past few years, significant advancements have been made in the establishment of scalable production methods for graphene and materials based on graphene. Since there is currently a wide variety of graphene material with various morphologies and characteristics, it is even more important that the production approach and the intended application be properly matched. This review gathers the most recent data and aims to give the reader a comprehensive overview of the most recent developments in the use of graphene and GBMs in various anti-corrosion strategies. The structure-property correlation and anticorrosion techniques in these systems are given special consideration. The current article offers a critical examination of this topic as well, stressing the areas that require more research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30658-7 | DOI Listing |
Nano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; College of Aerospace Engineering, Nanjing University of Aerona
Ion adsorption at the solid-liquid interface of two-dimensional (2D) materials is ubiquitous and plays a pivotal role in interfacial physicochemical interactions. In practical applications, 2D materials are typically supported on solid substrates. Understanding the role of the supporting substrate is therefore critical for advancing our fundamental knowledge of interfacial interactions and downstream application success.
View Article and Find Full Text PDFChem Rec
September 2025
Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China.
Nucleophilic substitution reaction (SR) plays a crucial role in traditional organic chemistry, and its extension into two dimensional (2D) materials has recently created a series of functional materials and advanced applications. However, the traditional SR process is usually indiscriminately copied into existing 2D reaction systems, which tremendously restricts the development of special 2D functional materials and sophisticated applications. In this work, a brand-new spin-active polarons-induced SR process in typical 2D fluorographene (FG) is proposed, where nucleophiles preferentially attack particular oxygen groups for functional grafting, simultaneously inducing the generation of spin-active polarons and subsequently rapid defluorination on the FG nanosheet.
View Article and Find Full Text PDFChem Res Toxicol
September 2025
Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece.
Graphene-based nanomaterials have transformed biomedical applications due to their exceptional physicochemical properties, and nitrogen (N)-doping further enhances the electrocatalytic activity of graphene. Driven by the demand for safer and more sustainable nanomaterials, in this work, we compared eco-friendly produced - doped graphene (bD) with conventionally synthesized - doped graphene (cD) in three different cell lines. Across all cell types and assays, cD was more toxic than bD.
View Article and Find Full Text PDF