98%
921
2 minutes
20
Nuclear DNA is the canonical target for biological damage induced by Auger electrons (AE) in the context of targeted radionuclide therapy (TRT) of cancer, but other subcellular components might also be relevant for this purpose, such as the energized mitochondria of tumor cells. Having this in mind, we have synthesized novel DOTA-based chelators carrying a prostate-specific membrane antigen (PSMA) inhibitor and a triphenyl phosphonium (TPP) group that were used to obtain dual-targeted In-radioconjugates ( and ), aiming to promote a selective uptake of an AE-emitter radiometal (In) by PSMA+ prostate cancer (PCa) cells and an enhanced accumulation in the mitochondria. These dual-targeted In-radiocomplexes are highly stable under physiological conditions and in cell culture media. The complexes showed relatively similar binding affinities toward the PSMA compared to the reference tracer , in line with their high cellular uptake and internalization in PSMA+ PCa cells. The complexes compromised cell survival in a dose-dependent manner and in the case of to a higher extent than observed for the single-targeted congener . μSPECT imaging studies in PSMA+ PCa xenografts showed that the TPP pharmacophore did not interfere with the excellent tumor uptake of the "golden standard" , although it led to a higher kidney retention. Such kidney retention does not necessarily compromise their usefulness as radiotherapeutics due to the short tissue range of the Auger/conversion electrons emitted by In. Overall, our results provide valuable insights into the potential use of mitochondrial targeting by PSMA-based radiocomplexes for efficient use of AE-emitting radionuclides in TRT, giving impetus to extend the studies to other AE-emitting trivalent radiometals (e.g., Tb or Er) and to further optimize the designed dual-targeting constructs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00787 | DOI Listing |
Cureus
August 2025
Internal Medicine, Chukwuemeka Odumegwu Ojukwu University Teaching Hospital, Awka, NGA.
Stage IV prostate cancer (PCa) refers to a disease that has metastasized beyond the prostate gland to distant sites, such as bones, visceral organs, or non-regional lymph nodes. While early attempts at curative therapy were occasionally made in oligometastatic cases, current guidelines uniformly recommend palliative-intent management once true metastatic spread is confirmed. Over the past decade, treatment paradigms have shifted from androgen deprivation therapy (ADT) monotherapy to earlier intensification with combination regimens including chemo-hormonal therapy and next-generation hormonal agents to improve survival and quality of life (QoL).
View Article and Find Full Text PDFOncol Res
September 2025
Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
Background: U2AF homology motif kinase 1 (UHMK1) has been associated with RNA processing and protein phosphorylation, thereby influencing tumor progression. The study aimed to explore its regulatory mechanisms and biological functions in human prostate cancer (PCa).
Methods: In this study, we systematically evaluated the expression and prognostic significance of UHMK1 in public databases, followed by validation through immunohistochemistry (IHC) in PCa specimens.
Front Immunol
September 2025
Department of Urology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China.
In the study of prostate diseases, the microenvironment associated with chronic prostatitis is characterized by abnormal activation of immune cells, leading to excessive accumulation of pro-inflammatory factors and an imbalance in the antioxidant defense system. This results in the overproduction of reactive oxygen species (ROS) and the subsequent triggering of oxidative stress. Oxidative stress persistently disrupts the homeostasis of prostate tissue through various mechanisms, including the damage to biomacromolecules, the regulation of inflammatory pathways, and the induction of apoptosis.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Division of Biochemistry and Molecular Biology, Siberian State Medical University, Ministry of Health of the Russian Federation, 634050 Tomsk, Russia.
Background: Sarcopenia is a complex, multifactorial condition characterized by progressive loss of muscle mass, strength, and function. Despite growing awareness, the early diagnosis and pathophysiological characterization of this condition remain challenging due to the lack of integrative biomarkers.
Objective: This study aimed to conduct a comprehensive multilevel profiling of clinical parameters, immune cell phenotypes, extracellular vesicle (EV) signatures, and biochemical markers to elucidate biological gradients associated with different stages of sarcopenia.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China.
Objectives: To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets.
Methods: Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses.