Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Since ancient times, China has used natural medicine as the primary way to combat diseases and has a rich arsenal of natural medicines. With the progress of the times, the extraction of bioactive molecules from natural drugs has become the new development direction for natural medicines. Among the numerous natural drugs, Schisandrin C (Sch C), derived from Schisandra Chinensis (Turcz.) Baill. It has excellent potential for development and has been shown to possess various pharmacological properties, including hepatoprotective, antitumor and anti-inflammatory activities. Based on the biological properties of hepatoprotection, scholars have explored Sch C and its synthetic products in depth; some studies have shown that pentosidine has the effect of improving the symptoms of liver fibrosis and reducing the concentration of alanine transaminase (ALT) and aspartate aminotransferase (AST) in the serum of rats, which is an essential inspiration for the development of anti-liver fibrosis drugs. But more in vivo and ex vivo studies still need to be included. This paper focuses on Sch C's extraction and synthesis, biological activities and drug development progress. The future application prospects of Sch C are discussed to perfect its development work further.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202301298DOI Listing

Publication Analysis

Top Keywords

biological properties
8
schisandra chinensis
8
natural medicines
8
natural drugs
8
natural
5
development
5
review extraction
4
extraction purification
4
purification biological
4
properties structure-activity
4

Similar Publications

Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.

View Article and Find Full Text PDF

Navigating condensate micropolarity to enhance small-molecule drug targeting.

Nat Chem Biol

September 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.

View Article and Find Full Text PDF

ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.

View Article and Find Full Text PDF

Beyond Hemoglobin: A Review of Hemocyanin and the Biology of Purple Blood.

Zhongguo Ying Yong Sheng Li Xue Za Zhi

September 2025

PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH#2, Bhauti, Kanpur, Uttar Pradesh, India.

Hemocyanin is dissolved freely in hemolymph, the invertebrate blood substitute, in contrast to haemoglobin, which is encased in red blood cells. When oxygenated, this pigment gives mollusc and arthropod blood its characteristic blue or purple hue. This review article delves into the fascinating biology of hemocyanin, the copper-based oxygen-carrying protein responsible for "purple blood" in many invertebrates, contrasting its characteristics with the more familiar iron-based hemoglobin.

View Article and Find Full Text PDF

A numerical investigation of the kinematic and fluid dynamic behaviour of an intramuscular autoinjector designed for optimising injection efficiency.

Med Eng Phys

October 2025

Department of Mechanical Engineering, University of Cape Town, 7701, South Africa; Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, 7701, South Africa.

The usability and versatility of autoinjectors in managing chronic and autoimmune diseases have made them increasingly attractive in medicine. However, investigations into autoinjector designs require an understanding of the kinematic properties and fluid behaviour during injection. To optimise injection efficiency, this study develops a mathematical and computational fluid dynamics (CFD) model of an IM autoinjector by investigating the effects of viscosity, needle length, needle diameter, and medication volume on the injection process.

View Article and Find Full Text PDF