98%
921
2 minutes
20
The limited water solubility and bioactivity of lipophilic phytochemicals may be enhanced by delivery systems. Ellagic acid (EA) has antioxidant and anti-inflammatory properties, but low solubility and instability limit its use in the food industry. In this study, the pH-shift method was applied to encapsulate EA with soy protein isolate (SPI). The interaction, encapsulation, and protective potential of the EA-loaded soy SPI complexes (SPI-EA) were investigated. The fluorescence spectra results suggest that the reaction between SPI and EA is spontaneous, with hydrophobic interactions predominating. Binding of EA molecules quenches the intrinsic fluorescence of SPI, mainly static quenching, with a binding site involved in the binding process. The ultraviolet (UV)-visible spectroscopy of the SPI-EA complexes included the characteristic absorption peaks of both SPI and EA, and the scanning electron microscopy images further indicated that the EA had been successfully embedded in SPI. Fourier transform infrared spectroscopy illustrates that EA has significantly changed the secondary structure of the SPI, primarily in the form of a decreased content of α-helix structures and an increased content of β-sheet and random coil structures. The encapsulation efficiency of EA was concentration-dependent, up to 81.08%. The addition of EA reduces the size of SPI particles (d < 155 nm). In addition, the SPI-EA complex showed up to 81.05% and 96.46% 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity. TGA showed that the degradation temperature of SPI-EA complex could be extended up to 300°C. And by encapsulation of EA, the loss of EA under the action of UV light, heat treatment, and high concentration of salt ion sensitive environment can be reduced. PRACTICAL APPLICATION: Ellagic acid (EA), a natural bioactive with low water solubility and stability, can be enhanced by forming an inclusion complex with soy protein isolate (SPI). SPI-EA complex has broad potential applications in the food, beverage, and pharmaceutical industries. Multiple spectral analyses have contributed to our understanding of the formation and interaction mechanisms of the SPI-EA complex under pH-driven conditions. Stability assays have also aided in the development of dietary resources for EA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.16836 | DOI Listing |
Food Res Int
November 2025
College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
For recovering whey soybean protein (WSP) from soybean whey wastewater (SWW) in food industry, a foam separation method for separating WSP by using temperature-responsive Janus sheets (MF-JNSs-PN) as foam stabilizer was established. MF-JNSs-PN was prepared by grafting the temperature-responsive polymer PNIPAM onto one side of the sheet inorganic material using BSA@Cu(PO)-MF as the template. MF-JNSs-PN has a good ability to stabilize the foam due to inducing the hydrophilicity and hydrophobicity transition by adjusting the temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.
Cultivating fat for edible tissue presents significant challenges, due to the high costs associated with growth and differentiation factors, alongside the poor viability of adipocytes resulting from cell clustering. Additionally, there is a gap in research regarding the rapid accumulation of fats within cells. To that end, this study presents the development of a biodegradable soy protein colloidosome system for an efficient application: direct delivery of oils into bovine satellite cells, enabling rapid intracellular fat accumulation without the need for adipogenic differentiation.
View Article and Find Full Text PDFJ Vet Med Sci
September 2025
Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Nippon Veterinary and Life Science University.
This study investigated the effects of soy isoflavone yeast fermented extract (soyF) and soy isoflavone yeast unfermented extract (soyN) on rat ileal smooth muscle contraction. SoyF and soyN inhibited carbachol (CCh)- or KCl-induced contraction in a concentration-dependent manner; however, these effects were stronger for CCh-induced contraction than that for KCl, and the relaxation effect was stronger for soyF than for soyN. SoyF-induced relaxation was attenuated by 4-aminopyridine (4-AP), a Kv channel inhibitor, and iberiotoxin (IbTX), a calcium-activated potassium channel (BK channel) inhibitor.
View Article and Find Full Text PDFFood Chem
September 2025
School of Science, RMIT University, Melbourne, VIC 3083, Australia; The Centre for Advanced Materials and Industrial Chemistry (CAMIC), Melbourne, VIC 3083, Australia. Electronic address:
Protein-rich custards were developed for elderly individuals with dysphagia by combining soy protein isolate (SPI) and milk protein concentrate (MPC), with and without transglutaminase (TG). The formulations were designed to resemble the texture, rheology, and swallowability of MPC-only custard. Custards with 1:1 and 1:2 SPI-to-MPC ratios, both with and without 0.
View Article and Find Full Text PDFFood Chem
September 2025
College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China. Electronic address: wangpei@nj
Selectively hydrolyzed soy protein can enhance wheat-based product quality by modulating gluten thermal polymerization. This study examined the effects of β-conglycinin (7S) and glycinin hydrolysate (GH) on gluten rheological and thermal properties, particle size, Raman spectra, and microstructure during heating. Both 7S and GH improved gluten viscoelasticity, with their combined addition (7S/GH) showing the strongest effect.
View Article and Find Full Text PDF