98%
921
2 minutes
20
Disease surveillance systems provide early warnings of disease outbreaks before they become public health emergencies. However, pandemics containment would be challenging due to the complex immunity landscape created by multiple variants. Genomic surveillance is critical for detecting novel variants with diverse characteristics and importation/emergence times. Yet, a systematic study incorporating genomic monitoring, situation assessment, and intervention strategies is lacking in the literature. We formulate an integrated computational modeling framework to study a realistic course of action based on sequencing, analysis, and response. We study the effects of the second variant's importation time, its infectiousness advantage and, its cross-infection on the novel variant's detection time, and the resulting intervention scenarios to contain epidemics driven by two-variants dynamics. Our results illustrate the limitation in the intervention's effectiveness due to the variants' competing dynamics and provide the following insights: i) There is a set of importation times that yields the worst detection time for the second variant, which depends on the first variant's basic reproductive number; ii) When the second variant is imported relatively early with respect to the first variant, the cross-infection level does not impact the detection time of the second variant. We found that depending on the target metric, the best outcomes are attained under different interventions' regimes. Our results emphasize the importance of sustained enforcement of Non-Pharmaceutical Interventions on preventing epidemic resurgence due to importation/emergence of novel variants. We also discuss how our methods can be used to study when a novel variant emerges within a population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691339 | PMC |
http://dx.doi.org/10.1073/pnas.2305227120 | DOI Listing |
J Vet Pharmacol Ther
September 2025
Clinical Sciences Department, Colorado State University, Fort Collins, Colorado, USA.
The purpose of this study was to evaluate the pharmacokinetics of oral (PO) ondansetron compared to intravenous (IV) ondansetron in eight healthy client-owned dogs. Dogs were randomized to one of two protocols in a crossover design, receiving PO or IV ondansetron at a dose of 1 mg/kg on Day 0 and the opposite formulation at an equal dose on Day 7. Plasma was collected at baseline and 1, 2, 4, and 8 h post administration.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFPsychol Res
September 2025
Neurorehabilitation Research Center, Kio University, Nara, Japan.
The ability to detect small errors between sensory prediction in the brain and actual sensory feedback is important in rehabilitation after brain injury, where motor function needs to be restored. To date in the recent study, a delayed visual error detection task during upper limb movement was used to measure this ability for healthy participants or patients. However, this ability during walking, which is the most sought-after in brain-injured patients, was unclear.
View Article and Find Full Text PDFExp Brain Res
September 2025
Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.
Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.
View Article and Find Full Text PDFClin Infect Dis
September 2025
Epidemiology Informatics, Centre for Health Analytics, Melbourne Children's Campus, Parkville, Victoria, Australia.
Background: Following the introduction of a funded recombinant shingles (RZV, Shingrix®) vaccination program in ≥65 years in Australia, clinician reports of shingles presentations shortly after vaccination emerged. We investigated whether there was an increase in shingles risk immediately post RZV vaccination in South-eastern Australia.
Methods: Two independent datasets- a general practice dataset and a statewide linked dataset- were analysed separately using self-controlled case series analyses (SCCS) with 21-days post-vaccination as the risk window.