A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Analysis of Bioactive Compounds Produced by Bacillus mojavensis ZA1 and Their Antagonistic Effect on Colletotrichum coccodes by GC-MS. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The plant disease Colletotrichum coccodes, which lowers potato yields, poses a severe danger to the booming potato industry. Isolated plant endophytic bacteria from highland pasture can produce a variety of metabolites that lessen the risk that the pathogen C. coccodes poses to plant growth and development. Therefore, the objective of our work was to assess substances with antipathogenic properties made by the endophytic bacteria Bacillus mojavensis ZA1. Gas chromatography-mass spectrometry (GC-MS) was used in our investigation to accomplish a thorough structural elucidation of the antipathogenic compounds produced by the endophytic bacterial strain B. mojavensis ZA1. The results showed that the metabolites extracted from ethyl acetate as an extractant were the most effective in inhibiting the pathogen C. coccodes, with 60.95% inhibition. Thirty-five distinct chemicals, including acids, esters, ketones, alcohols, amino acid ammonium salts, cyclic ethers, aromatic hydrocarbons, and heterocyclic compounds, were among the metabolites that may inhibit C. coccodes. Further analysis of the chemical groups in the compound structures revealed the potential of driving groups, such as hydroxyl, carbonyl, ester, benzene, carbon-carbon double bonds, and carbon rings, that prevent C. coccodes from performing its function. This study opens up new opportunities for plant protection programs by demonstrating that natural chemicals produced by B. mojavensis ZA1 can be used as candidates for cutting-edge plant disease management treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-023-04771-9DOI Listing

Publication Analysis

Top Keywords

mojavensis za1
16
compounds produced
8
bacillus mojavensis
8
colletotrichum coccodes
8
plant disease
8
endophytic bacteria
8
pathogen coccodes
8
coccodes
6
plant
5
analysis bioactive
4

Similar Publications