98%
921
2 minutes
20
The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657367 | PMC |
http://dx.doi.org/10.1038/s41467-023-43281-4 | DOI Listing |
J Neurophysiol
September 2025
Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.
View Article and Find Full Text PDFRecursive splice sites are rare motifs postulated to facilitate splicing across massive introns and shape isoform diversity, especially for long, brain-expressed genes. The necessity of this unique mechanism remains unsubstantiated, as does the role of recursive splicing (RS) in human disease. From analyses of rare copy number variants (CNVs) from almost one million individuals, we previously identified large, heterozygous deletions eliminating an RS site (RS1) in the first intron of that conferred substantial risk for attention deficit hyperactivity disorder (ADHD) and other neurobehavioral traits.
View Article and Find Full Text PDFeNeuro
August 2025
Department of Cell & Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI
Pathological levels of beta amyloid (Aβ) lead to disruption and elimination of synapses in brain as the result of direct neurotoxicity as well as neuroinflammation. The synaptic impact of beta amyloid includes altered morphology and reduced number of dendritic spines at excitatory synapses, evident in the brains of individuals with Alzheimer's disease. Here, we assessed the ability of an identified neuroprotective peptide, YEVHHQ, derived from the N-terminal domain of Aβ, known as the AβCore, to protect against Aβ-induced alterations in dendritic spines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2025
Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
Synaptic transmission has long been thought to regulate neuronal wiring during postnatal development, but this assumption remains largely untested. Selective strengthening of a single "winner" climbing fiber (CF) afferent to each Purkinje cell (PC) and elimination of the other "loser" CF axons in the cerebellum has been a representative model of neural circuit refinement. Here, we examined the role of neurotransmission at CF-PC synapses in their postnatal development.
View Article and Find Full Text PDFTransl Psychiatry
August 2025
Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
Sleep loss is a key trigger for a manic episode of bipolar disorder (BD), but the underlying microglial and molecular mechanisms remain unclear. Sleep loss induces microglial and inflammatory responses. Microglia, resident macrophages in the central nervous system, regulate synaptic pruning by engulfing dendritic spines.
View Article and Find Full Text PDF