Publications by authors named "Kellianne D Alexander"

Objective: No current therapy prevents swelling after ischemic stroke, and pathways leading to edema formation are not completely understood. We have found the immune regulator soluble ST2 (sST2) to be a candidate mediator of edema formation. In the current study, we sought to identify a mechanistic relationship between sST2 and edema in ischemic stroke.

View Article and Find Full Text PDF

Advancements in human induced pluripotent stem cell (hiPSC) technology have enabled co-culture models for disease modeling in physiologically relevant systems. However, co-culturing protocols face challenges in usability and consistency. Here, we introduce a robust, reproducible hiPSC-derived co-culture system integrating astrocytes, neurons, and microglia.

View Article and Find Full Text PDF

Genetic studies implicate clusterin (CLU) in the pathogenesis of Alzheimer's disease (AD), yet its precise molecular impact remains unclear. Through unbiased proteomic profiling and functional validation in CLU-deficient astrocytes, we identify increased nuclear factor κB (NF-κB)-dependent signaling and complement C3 secretion. Reduction of astrocyte CLU induced microglia-dependent modulation of extracellular apolipoprotein E (APOE) and phosphorylated tau, as well as increased microglial phagocytosis and reduced synapse numbers.

View Article and Find Full Text PDF

Parkinson disease (PD) is the second most common neurodegenerative disease, characterized by both motor and cognitive features. Motor symptoms primarily involve midbrain dopaminergic neurons, while cognitive dysfunction involves cortical neurons. Environmental factors are important contributors to PD risk.

View Article and Find Full Text PDF

As nervous systems mature, neural circuit connections are reorganized to optimize the performance of specific functions in adults. This reorganization of connections is achieved through a remarkably conserved phase of developmental circuit remodeling that engages neuron-intrinsic and neuron-extrinsic molecular mechanisms to establish mature circuitry. Abnormalities in circuit remodeling and maturation are broadly linked with a variety of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia.

View Article and Find Full Text PDF

Alpha-synuclein (αS)-rich Lewy bodies and neurites in the cerebral cortex correlate with the presence of dementia in Parkinson disease (PD) and Dementia with Lewy bodies (DLB), but whether αS influences synaptic vesicle dynamics in human cortical neurons is unknown. Using a new iPSC-based assay platform for measuring synaptic vesicle cycling, we found that in human cortical glutamatergic neurons, increased αS from either transgenic expression or triplication of the endogenous locus in patient-derived neurons reduced synaptic vesicle cycling under both stimulated and spontaneous conditions. Thus, using a robust, easily adopted assay platform, we show for the first time αS-induced synaptic dysfunction in human cortical neurons, a key cellular substrate for PD dementia and DLB.

View Article and Find Full Text PDF

The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons.

View Article and Find Full Text PDF