Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antimicrobial resistance (AMR) is a major public health concern, and environmental bacteria have been recognized as important reservoirs of antimicrobial resistance genes (ARGs). Citrobacter, a common environmental bacterium and opportunistic pathogen in humans and other animals, has been largely understudied in terms of its diversity and AMR potential. Whole-genome (short-read) sequencing on a total of 77 Citrobacter isolates obtained from Australian silver gull (Chroicocephalus novaehollandiae) (n = 17) and influent wastewater samples (n = 60) was performed, revealing a diverse Citrobacter population, with seven different species and 33 sequence types, 17 of which were novel. From silver gull using non-selective media we isolated a broader range of species with little to no mobilised ARG carriage. Wastewater isolates (selected using Carbapenem- Resistant Enterobacterales (CRE) selective media) carried a heavy burden of ARGs (up to 21 ARGs, conferring resistance to nine classes of antibiotics), with several novel multidrug-resistant (MDR) lineages identified, including C. braakii ST1110, which carried ARGs conferring resistance to eight to nine classes of antibiotics, and C. freundii ST1105, which carried two carbapenemase genes, bla in class 1 integron structure, and bla. Additionally, we identified an MDR C. portucalensis isolate carrying bla, bla, and mcr-9. We identified IncC, IncM2, and IncP6 plasmids as the likely vectors for many of the critically important mobilised ARGs. Phylogenetic analyses were performed to assess any epidemiological linkages between isolation sources, demonstrating low relatedness across sources beyond the ST level. However, these analyses did reveal some closer relationships between strains from disparate wastewater sources despite their collection some 13,000 km apart. These findings support the need for future surveillance of Citrobacter populations in wastewater and wildlife populations to monitor for potential opportunistic human pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168608DOI Listing

Publication Analysis

Top Keywords

sequence types
8
resistance genes
8
antimicrobial resistance
8
silver gull
8
args conferring
8
conferring resistance
8
resistance classes
8
classes antibiotics
8
citrobacter
5
wastewater
5

Similar Publications

Antimicrobial peptides (AMPs) have emerged as promising candidates for combating drug-resistant pathogens and certain cancer types. However, their therapeutic applications are often limited by undesired hemolytic activity, while many AMPs exhibit only moderate potency. Herein, the "helical wheel rotation" strategy as a simple, cost-effective, and modular approach to optimize the pharmacological properties of amphipathic α-helical AMPs without altering their amino acid composition is explored.

View Article and Find Full Text PDF

Dynamic and precise electromagnetic levitation of single cells.

Proc Natl Acad Sci U S A

September 2025

Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.

The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.

View Article and Find Full Text PDF

Animals communicate information primarily via their calls, and directly using their vocalizations proves essential for executing species conservation and tracking biodiversity. Conventional visual approaches are frequently limited by distance and surroundings, while call-based monitoring concentrates solely on the animals themselves, proving more effective and straightforward than visual techniques. This paper introduces an animal sound classification model named SeqFusionNet, integrating the sequential encoding of Transformer with the global perception of MLP to achieve robust global feature extraction.

View Article and Find Full Text PDF

Large B cell lymphoma microenvironment archetype profiles.

Cancer Cell

July 2025

Department of Lymphoma and Myeloma, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA; Lymphoid Malignancies Program, UT MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA. Electronic address: mgreen5@mdander

Large B cell lymphomas (LBCL) are clinically and biologically heterogeneous lymphoid malignancies with complex microenvironments that are central to disease etiology. Here, we have employed single-nucleus multiome profiling of 232 tumor and control biopsies to characterize diverse cell types and subsets that are present in LBCL tumors, effectively capturing the lymphoid, myeloid, and non-hematopoietic cell compartments. Cell subsets co-occurred in stereotypical lymphoma microenvironment archetype profiles (LymphoMAPs) defined by; (1) a sparsity of T cells and high frequencies of cancer-associated fibroblasts and tumor-associated macrophages (FMAC); (2) lymph node architectural cell types with naive and memory T cells (LN); or (3) activated macrophages and exhausted CD8 T cells (TEX).

View Article and Find Full Text PDF

Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).

Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.

View Article and Find Full Text PDF