98%
921
2 minutes
20
Objectives: Two advanced imaging modalities used to detect lymph node (LN) metastases in prostate cancer patients are prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography and ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI). As these modalities use different targets, a subnodal comparison is needed to interpret both their correspondence and their differences. The aim of this explorative study was to compare ex vivo 111 In-PSMA μSPECT images with high-resolution 7 T USPIO μMR images and histopathology of resected LN specimens from prostate cancer patients to assess the degree of correspondence at subnodal level.
Materials And Methods: Twenty primary prostate cancer patients who underwent pelvic LN dissection were included and received USPIO contrast and 111 In-PSMA. A total of 41 LNs of interest (LNOIs) were selected for ex vivo imaging based on γ-probe detection or palpation. μSPECT and μMRI acquisition were performed immediately after resection. Overlay of μSPECT images on MR images was performed, and the level of correspondence (LoC) between μSPECT and μMR findings was assessed according to a 4-point Likert classification scheme.
Results: Forty-one LNOIs could be matched to an LN on ex vivo μMRI. Coregistration of μSPECT and USPIO-enhanced water-selective multigradient echo MR images was successful for all 41 LNOIs. Ninety percent of the lesions showed excellent correspondence regarding the presence of metastatic tissue and affected subnodal site (LoC 4; 37/41). In only 1 of 41 LNOIs, a small metastasis was misclassified by both techniques. Three LNOIs were classified as LoC 3 (7%) and 1 LNOI as LoC 2. All LoC 2 and LoC 3 lesions had PSMA-expressing metastases on final histopathology.
Conclusions: Coregistration of μSPECT and USPIO-μMRI showed excellent subnodal correspondence in the majority (90%) of LNs. Ex vivo imaging may thus help localize small cancer deposits within resected LNs and could contribute to improved interpretation of in vivo imaging of LNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RLI.0000000000001046 | DOI Listing |
J Pediatr Hematol Oncol
September 2025
Department of Pediatric, The University of Jordan.
Background: Rhabdomyosarcoma (RMS) typically responds well to a combination of treatments with favorable prognosis in children 1 to 9 years old. However, infants may fare worse due to receiving less aggressive local therapy for concerns about long-term effects of surgery/radiation. This study investigates the clinical characteristics, treatment approach, and survival outcomes of RMS in children under 2.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFClin Cancer Res
September 2025
University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
Human Kallikrein 2 (KLK2) is a prostate cancer tissue specific protein that is regulated by androgen receptor (AR) signaling. KLK2 was not previously recognized as a therapeutic target as it is secreted. It has now been demonstrated that KLK2 is expressed on the cell surface and targetable by various methodologies.
View Article and Find Full Text PDFInorg Chem
September 2025
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
This study focuses on designing and developing a novel three-dimensional porphyrinic covalent organic framework (3D-Por-COF) to enhance anticancer sono-photodynamic therapy (SPDT). Leveraging the unique structural advantages of 3D COFs, this work addresses the limitations of traditional 2D-Por-COFs, particularly regarding reactive oxygen species (ROS) production and therapeutic efficacy. The newly developed 3D-Por-COF demonstrated significantly higher ROS generation under combined sonodynamic and photodynamic conditions, leading to an improved therapeutic effect against prostate cancer cells.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.
Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.
Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.