98%
921
2 minutes
20
Titanium implants are widely used ; however, implantation occasionally fails due to infections during the surgery or poor osseointegration after the surgery. To solve the problem, an intelligent functional surface on titanium implant that can sequentially eradicate bacteria biofilm at the initial period and promote osseointegration at the late period of post-surgery time is designed. Such surfaces can be excited by near infrared light (NIR), with rare earth nanoparticles to upconvert the NIR light to visible range and adsorb by Au nanoparticles, supported by titanium oxide porous film on titanium implants. Under NIR irradiation, the implant converts the energy of phonon to hot electrons and lattice vibrations, while the former flows directly to the contact substance or partially reacts with the surrounding to generate reactive oxygen species, and the latter leads to the local temperature increase. The biofilm or microbes on the implant surface can be eradicated by NIR treatment in vitro and in vivo. Additionally, the surface exhibits superior biocompatibility for cell survival, adhesion, proliferation, and osteogenic differentiation, which provides the foundation for osseointegration. In vivo implantation experiments demonstrate osseointegration is also promoted. This work thus demonstrates NIR-generated electrons can sequentially eradicate biofilms and regulate the osteogenic process, providing new solutions to fabricate efficient implant surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202307756 | DOI Listing |
Acta Ortop Mex
September 2025
Servicio de Ortopedia y Traumatología, Hospital de San Rafael, Hospitales Pascual. Cádiz, España.
Introduction: anatomical deformities such as developmental dysplasia of the hip (DDH) and Perthes disease represent a challenge for reconstruction. The use of 3D-printed models can be helpful for assessing the deformity, bone mass, implant size, and orientation.
Objectives: to prospectively evaluate the outcomes of 3D simulation in primary total hip arthroplasty.
PLoS One
September 2025
Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 0S8, Canada.
Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.
View Article and Find Full Text PDFJ Prosthodont
September 2025
Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
Purpose: This study aimed to evaluate the inherent and after cyclic loading fracture strength of implant-supported cantilevered fixed prostheses fabricated from recently introduced additively manufactured (AM) and subtractively manufactured (SM) materials, considering variations in prosthesis height.
Materials And Methods: Three cylinder-shaped master files (20 mm long and 11 mm wide) with varying heights (7, 11, and 15 mm) and a titanium-base (Ti-base) abutment space were designed. These designs were used to fabricate a total of 144 specimens with two AM resins indicated for definitive use (Crowntec; AM-CT and Flexcera Smile Ultra+; AM-FS), one high-impact polymer composite (breCAM.
Clin Cosmet Investig Dent
August 2025
Department of Periodontology, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
Titanium is widely used for dental implant abutments due to its mechanical strength, biocompatibility, and corrosion resistance; however, its gray coloration can compromise esthetic outcomes, particularly in patients with thin or translucent gingival biotypes. Anodization, a surface modification technique altering the titanium oxide layer, has been proposed to improve soft tissue aesthetics by producing abutments with warmer tones (eg, pink or gold) that harmonize with the surrounding gingiva. This systematic review aimed to evaluate the clinical and aesthetic outcomes of anodized titanium abutments compared to non-anodized titanium and other materials, with a focus on peri-implant soft tissue health and visual integration.
View Article and Find Full Text PDF