A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of a two-enzyme system in Aspergillus niger for efficient production of N-acetyl-β-D-glucosamine from powdery chitin. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A chitinase (PbChi70) from Paenibacillus barengoltzii was engineered by directed evolution to enhance its hydrolysis efficiency towards powder chitin. Through two rounds of screening, a mutant (mPbChi70) with a maximum specific activity of 73.21 U/mg was obtained, which is by far the highest value ever reported. The mutant gene was further transformed into Aspergillus niger FBL-B (ΔglaA) which could secrete high level of endogenously β-N-acetylglucosaminidase (GlcNAcase), thus a two-enzyme expression system was constructed. The highest chitinase activity of 61.33 U/mL with GlcNAcase activity of 353.1 U/mL was obtained in a 5-L fermentor by high-cell density fermentation. The chitin-degrading enzyme cocktail was used for the bioconversion of GlcNAc from powder chitin directly, and the highest conversion ratio reached high up to 71.9 % (w/w) with GlcNAc purity ≥95 % (w/w). This study may provide an excellent chitinase as well as a double enzyme cocktail system for efficient biological conversion of chitin materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.130024DOI Listing

Publication Analysis

Top Keywords

aspergillus niger
8
powder chitin
8
enzyme cocktail
8
development two-enzyme
4
two-enzyme system
4
system aspergillus
4
niger efficient
4
efficient production
4
production n-acetyl-β-d-glucosamine
4
n-acetyl-β-d-glucosamine powdery
4

Similar Publications