98%
921
2 minutes
20
In 2017, the Centers for Disease Control and Prevention (CDC) established the Antimicrobial Resistance Laboratory Network to improve domestic detection of multidrug-resistant organisms. CDC and four laboratories evaluated a commercial broth microdilution panel. Antimicrobial susceptibility testing using the Sensititre GN7F (ThermoFisher Scientific, Lenexa, KS) was evaluated by testing 100 CDC and Food and Drug Administration AR Isolate Bank isolates [40 Enterobacterales (ENT), 30 (PSA), and 30 (ACB)]. We assessed multiple amounts of transfer volume (TV) between the inoculum and tubed 11-mL cation-adjusted Mueller-Hinton broth: 1 µL [tribe Proteeae (P-tribe) only] and 10, 30, and 50 µL, resulting in respective CFU per milliter of 1 × 10, 1 × 10, 3 × 10, and 5 × 10. Four TV combinations were analyzed: standard (STD) [1 µL (P-tribe) and 10 µL], enhanced standard (E-STD) [1 µL (P-tribe) and 30 µL], 30 µL, and 50 µL. Essential agreement (EA), categorical agreement, major error (ME), and very major error (VME) were analyzed by organism then TVs. For ENT, the average EA across laboratories was <90% for 7 of 15 β-lactams using STD and E-STD TVs. As TVs increased, EA increased (>90%), and VMEs decreased. For PSA, EA improved as TVs increased; however, MEs also increased. For ACB, increased TVs provided slight EA improvements; all TVs yielded multiple VMEs and MEs. For ENT and ACB, Minimum inhibitory concentrations (MICs) trended downward using a 1 or 10 µL TV; there were no obvious MIC trends by TV for PSA. The public health and clinical consequences of missing resistance warrant increased TV of 30 µL for the GN7F, particularly for P-tribe, despite being considered "off-label" use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729754 | PMC |
http://dx.doi.org/10.1128/jcm.00799-23 | DOI Listing |
J Appl Microbiol
September 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed-to-be-University), Pillaiyarkuppam, Pondicherry - 607 402, India.
Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).
Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.
Vet Med Sci
September 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh.
The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Medical Microbiology Department, College of Medicine, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq.
Pseudomonas aeruginosa is a prominent opportunistic pathogen, especially in burn wound infections, and is often associated with high morbidity and mortality due to its multidrug resistance (MDR) characteristics.This study aimed to evaluate the multidrug resistance profile and perform a molecular phylogenetic analysis of P. aeruginosa isolates recovered from human burn infection sample .
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 P.O. Box 6666, Saudi Arabia.
Foodborne illnesses pose a significant public health threat globally, particularly in Saudi Arabia, where the rapid growth of the food service sector has increased the risk of exposure to multidrug-resistant (MDR) bacteria. Traditional microbiological methods are often time-consuming and may lack precision, highlighting the need for faster and more accurate diagnostic alternatives. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was employed for the rapid and precise identification of bacterial contaminants in ready-to-eat (RTE) foods, alongside an assessment of their antibiotic resistance profiles.
View Article and Find Full Text PDFArch Microbiol
September 2025
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.
View Article and Find Full Text PDF