Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: FLASH-RT can potentially improve the sparing of normal tissues while preserving the tumoricidal efficiency, owing to the radiation with ultra-high dose rate. However, the FLASH mechanism remains to be solved. A popular FLASH model is based on radiolytic oxygen depletion (ROD), which explains for radiation protection of normal tissues under FLASH-RT. However, ROD does not explain the preservation of tumoricidal efficiency for tumors. This work will develop a ROS+ROD FLASH model that can explain the differential tumor and normal-tissue response.

Approach: The new FLASH model utilizes reactive oxygen species (ROS) in addition to ROD, and takes into account that ROS level decreases during FLASH-RT. Specifically, the differential-equation model takes into account that the basic ROS level is lower during FLASH-RT and the degeneration rates of ROS are different in tumor cells and healthy cells. Based on this ROS+ROD FLASH model, the surviving fractions of tumor and normal cells are respectively compared between conventional radiotherapy (CONV-RT) and FLASH-RT.

Main Results: While ROD alone does not distinguish the response of tumors and normal tissues to FLASH-RT, the proposed new FLASH model based on ROD and ROS successfully explained the differential response of tumors and normal tissues to FLASH-RT, i.e., the preserved tumoricidal capability, which cannot be explained by ROD alone, and the extra normal-tissue protection owing to the ultra-high dose rate.

Significance: Since the ROS level decreases slower in tumors than in normal tissues, during FLASH-RT, ROS decreases more in normal tissue, thus can get more protection. By incorporating ROS in addition to ROD, the new FLASH model can not only recover all results by previous FLASH model with ROD alone, but also explain the differential response: preserved lethality of FLASH-RT to tumors and improved protection to normal tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635166PMC
http://dx.doi.org/10.1101/2023.10.20.23297337DOI Listing

Publication Analysis

Top Keywords

flash model
32
normal tissues
24
tissues flash-rt
16
ros level
12
tumors normal
12
flash
9
radiolytic oxygen
8
oxygen depletion
8
reactive oxygen
8
oxygen species
8

Similar Publications

Purpose: Large language models (LLMs) can assist patients who seek medical knowledge online to guide their own glaucoma care. Understanding the differences in LLM performance on glaucoma-related questions can inform patients about the best resources to obtain relevant information.

Methods: This cross-sectional study evaluated the accuracy, comprehensiveness, quality, and readability of LLM-generated responses to glaucoma inquiries.

View Article and Find Full Text PDF

Purpose: This study explores the potential of generative AI models to aid experts in developing scripts for pharmacokinetic (PK) models, with a focus on constructing a two-compartment population PK model using data from Hosseini et al.

Methods: Generative AI tools ChatGPT v3.5, Gemini v2.

View Article and Find Full Text PDF

Sparing effects of FLASH irradiation in patient-derived lung tissue.

Radiother Oncol

September 2025

Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, 91405 Orsay Cedex, France. Electronic address:

Background And Purpose: Radiation toxicities, such as pneumonitis and fibrosis, are major limitations affecting patients' quality of life. Developed a decade ago, FLASH radiotherapy is an innovative method that, by delivering radiation at ultrafast dose rate, reduces radiation toxicities on healthy tissue while preserving the anti-tumoral effect of radiotherapy. This so-called FLASH effect has been described in different preclinical models but has not been observed in human tissue.

View Article and Find Full Text PDF

Introduction: Preclinical evidence has demonstrated the potential of FLASH radiotherapy (FLASH-RT) to spare normal tissues compared to conventional (CONV) exposures. Most FLASH studies have used ultra-high dose rate (>40 Gy/sec) electrons and protons whilst comparatively few studies have reported photon FLASH responses. Given the widespread use of photons clinically, there is a need to characterise the FLASH effect using photons.

View Article and Find Full Text PDF

Evaluating anti-LGBTQIA+ medical bias in large language models.

PLOS Digit Health

September 2025

Department of Dermatology, Stanford University, Stanford, California, United States of America.

Large Language Models (LLMs) are increasingly deployed in clinical settings for tasks ranging from patient communication to decision support. While these models demonstrate race-based and binary gender biases, anti-LGBTQIA+ bias remains understudied despite documented healthcare disparities affecting these populations. In this work, we evaluated the potential of LLMs to propagate anti-LGBTQIA+ medical bias and misinformation.

View Article and Find Full Text PDF