98%
921
2 minutes
20
Poly(lactic acid) (PLA) and Poly(butylene succinate) (PBS) were chosen as raw materials and melt blended by a twin screw extruder and pelletized; then, the pellets were extruded into filaments; after that, various PBS/PLA blending samples were prepared by Fused Deposition Molding (FDM) 3D printing technology using the filaments obtained and the effect of the dosage of PBS on technological properties of 3D-printed specimens was investigated. For comparison, the PLA specimen was also prepared by FDM printing. The tensile strength, tensile modulus, thermal stability, and hydrophilicity became poorer with increasing the dosage of PBS, while the flexural strength, flexural modulus, impact strength, and crystallinity increased first and then decreased. The blend containing 10% PBS (10% PBS/PLA) had the greatest flexural strength of 60.12 MPa, tensile modulus of 2360.04 MPa, impact strength of 89.39 kJ/m, and crystallinity of 7.4%, which were increased by 54.65%, 61.04%, 14.78%, and 51.02% compared to those of printed PLA, respectively; this blend also absorbed the least water than any other specimen when immersed in water. Different from the transparent PLA filament, 10% PBS/PLA filament presented a milky white appearance. The printed 10% PBS/PLA specimen had a smooth surface, while the surface of the printed PLA was rough. All the results indicated that the printed 10% PBS/PLA specimen had good comprehensive properties, including improved mechanical properties, crystallization performance, and surface quality than PLA, as well as proper wettability and water absorption. The prominent conclusion achieved in this work was that 10% PBS/PLA should be an ideal candidate for biodegradable feedstock among all the PBS/PLA blends for FDM 3D printing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649279 | PMC |
http://dx.doi.org/10.3390/polym15214305 | DOI Listing |
Sci Total Environ
December 2024
Department of Chemistry "Giacomo Ciamician", University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy; Interdepartmental Centre for Research in Environmental Sciences (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy. Electronic address:
The potential release in the environment and biological effects of chemicals like additives and non-intentionally added substances present in conventional plastics and bioplastics is an issue that could occur if these materials are not properly disposed of. Herein, seven leachates of biobased and biodegradable plastics made of polylactic acid (PLA), polybutylene succinate (PBS)/PLA blends, and starch-based blends (SB) were characterized and compared for the inorganic and organic additives present in the source materials. The main inorganic elements found in the leachates were Na, Mg, K, and Ca (0.
View Article and Find Full Text PDFJ Environ Manage
October 2024
Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland.
To determine the actual timeframe of biodegradation, bioplastics (BPs) (based on polylactic acid (PLA), starch (FS), polybutylene succinate (PBS), cellulose (Cel)) were degraded with biowaste (B), which simulates real substrate technological conditions during composting. For comparison, standard conditions (with mature compost (C)) were also applied. The 90-day aerobic tests, both with C or B, were carried out at 58 ± 2 °C.
View Article and Find Full Text PDFPolymers (Basel)
November 2023
College of Science, Nanjing Forestry University, Nanjing 210037, China.
Poly(lactic acid) (PLA) and Poly(butylene succinate) (PBS) were chosen as raw materials and melt blended by a twin screw extruder and pelletized; then, the pellets were extruded into filaments; after that, various PBS/PLA blending samples were prepared by Fused Deposition Molding (FDM) 3D printing technology using the filaments obtained and the effect of the dosage of PBS on technological properties of 3D-printed specimens was investigated. For comparison, the PLA specimen was also prepared by FDM printing. The tensile strength, tensile modulus, thermal stability, and hydrophilicity became poorer with increasing the dosage of PBS, while the flexural strength, flexural modulus, impact strength, and crystallinity increased first and then decreased.
View Article and Find Full Text PDFSci Rep
April 2020
College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, China.
ACS Omega
October 2018
Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, P. R. China.
To obtain a new type of biodegradable material with high toughness and strength used for fused deposition modeling (FDM) printing, a series of poly(butylene succinate) (PBS)-based polymer materials was prepared via blending with polylactide (PLA). The rheological, thermal, and mechanical properties as well as FDM printing performances of the blends, such as distortion, cross section, and the interlayer bond strength, were characterized. The results show that with increasing PLA content, the blends possess higher melt viscosity, larger tensile strength, and modulus, which are more suitable for FDM printing.
View Article and Find Full Text PDF