Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The potential release in the environment and biological effects of chemicals like additives and non-intentionally added substances present in conventional plastics and bioplastics is an issue that could occur if these materials are not properly disposed of. Herein, seven leachates of biobased and biodegradable plastics made of polylactic acid (PLA), polybutylene succinate (PBS)/PLA blends, and starch-based blends (SB) were characterized and compared for the inorganic and organic additives present in the source materials. The main inorganic elements found in the leachates were Na, Mg, K, and Ca (0.1-100 mg L), corresponding to the main elements present in the bioplastics. Also trace elements such as Ba, Zn, Sr, B, Fe, Ti, Al, Mn, Cu, and Sn occurred in leachates with concentrations between 1 and 1000 μg L. In contrast, most of the organic additives found in the bioplastics did not migrate in water and the few organic compounds detected and identified were not of concern. The lowest tested concentration of PBS/PLA- and SB-leachates (0.5 % of the corresponding initial leachate) induced a significant algal growth inhibition (corresponding to bioplastic concentrations in water of 0.4 g L). Conversely, PLA-based materials were less toxic (LOEC corresponding to 10 % of the leachates or >75 %). No effect on seed germination nor the development of roots and shoots of cress was observed for any leachate prepared from PLA and PBS/PLA materials. Leachates prepared from SB bags inhibited the growth of roots and shoots at the concentrations of 25 and 50 %, while they induced hormesis at 10 % concentration promoting a growth higher than the control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177205DOI Listing

Publication Analysis

Top Keywords

additives bioplastics
8
organic additives
8
roots shoots
8
leachates
5
additives
4
bioplastics chemical
4
chemical characterization
4
characterization migration
4
migration water
4
water effects
4

Similar Publications

This in vitro study evaluated the effect of proanthocyanidin, palm oil, and vitamin E against initial erosion. Bovine enamel blocks (n = 140) were divided into 14 groups: C+_SnCl2/NaF/Am-F-containing solution (positive control); C-_deionized water (negative control); O_palm oil; P6.5_6.

View Article and Find Full Text PDF

Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.

View Article and Find Full Text PDF

A pediatric-onset case of chronic kidney disease caused by a novel sporadic variant and literature review.

Turk J Pediatr

September 2025

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: The α-actinin-4 (ACTN4) gene encodes an actin-binding protein, which plays a crucial role in maintaining the structure and function of podocytes. Previous studies have confirmed that ACTN4 mutations can lead to focal segmental glomerulosclerosis-1 (FSGS1), a rare disease primarily manifesting in adolescence or adulthood, characterized by mild to moderate proteinuria, with some cases progressing slowly to end-stage renal disease.

Case Presentation: We report a 12.

View Article and Find Full Text PDF

The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.

View Article and Find Full Text PDF

Alkaline pectinases are in demand in industrial processes that require the degradation of plant pectins at high pH, for example, removal of pectin stains from fabrics, cutlery, and porcelain; treatment of pectic wastewater; fermentation of coffee, tea, and cocoa; manufacture of poultry and animal feeds, and processing of textiles, and so forth. The present study aimed to (a) screen four alkaliphilic microbial isolates, previously obtained from samples collected around Lake Bogoria (soda lake), Baringo County, Kenya, for alkaline pectinases, and (b) characterize the pectinase-producers. The screening data revealed that all the isolates were pectinase producers, exhibiting catalytic activities that ranged from 1.

View Article and Find Full Text PDF