98%
921
2 minutes
20
Although advances in single-cell technologies have enabled the characterization of multiple omics profiles in individual cells, extracting functional and mechanistic insights from such information remains a major challenge. Here, we present scapGNN, a graph neural network (GNN)-based framework that creatively transforms sparse single-cell profile data into the stable gene-cell association network for inferring single-cell pathway activity scores and identifying cell phenotype-associated gene modules from single-cell multi-omics data. Systematic benchmarking demonstrated that scapGNN was more accurate, robust, and scalable than state-of-the-art methods in various downstream single-cell analyses such as cell denoising, batch effect removal, cell clustering, cell trajectory inference, and pathway or gene module identification. scapGNN was developed as a systematic R package that can be flexibly extended and enhanced for existing analysis processes. It provides a new analytical platform for studying single cells at the pathway and network levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681325 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3002369 | DOI Listing |
PLoS Biol
November 2023
State Key Laboratory of Reproductive Medicine and Offspring Health, School of Medicine, Southeast University, Nanjing, China.
Although advances in single-cell technologies have enabled the characterization of multiple omics profiles in individual cells, extracting functional and mechanistic insights from such information remains a major challenge. Here, we present scapGNN, a graph neural network (GNN)-based framework that creatively transforms sparse single-cell profile data into the stable gene-cell association network for inferring single-cell pathway activity scores and identifying cell phenotype-associated gene modules from single-cell multi-omics data. Systematic benchmarking demonstrated that scapGNN was more accurate, robust, and scalable than state-of-the-art methods in various downstream single-cell analyses such as cell denoising, batch effect removal, cell clustering, cell trajectory inference, and pathway or gene module identification.
View Article and Find Full Text PDF