98%
921
2 minutes
20
Purpose: Electroretinography (ERG) is used to assess retinal function in ophthalmology clinics and animal models of ocular disease; however, analyzing ERG waveforms can be a time-intensive process with interobserver variability. We developed ERGAssist, an automated approach, to perform non-subjective and repeatable feature identification ("marking") of the ERG waveform.
Methods: The automated approach denoised the recorded waveforms and then located the b-wave after applying a lowpass filter. If an a-wave was present, the lowpass filter wave was also used to help locate the a-wave, which was considered the initial large negative response after the flash stimuli. Oscillatory potentials (OPs) were found using a bandpass filter on the denoised waveform. We used two cohorts. One was a Coherence cohort that consisted of ERGs with eight dark-adapted and three light-adapted stimuli in Brown Norway rats (-6 to 1.5 log cd·s/m2). The Verification cohort consisted of control and diabetic (DM) Long Evans rats. We examined retinal function using a five-step dark-adapted protocol (-3 to 1.9 log cd·s/m2).
Results: ERGAssist showed a strong correlation with manual markings of ERG features in our Coherence dataset, including the amplitudes (a-wave: r2 = 0.99; b-wave: r2 = 0.99; OP: r2 = 0.92) and implicit times (a-wave: r2 = 0.96; b-wave: r2 = 0.90; OP: r2 = 0.96). In the Verification cohort, both approaches detected differences between control and DM animals and found longer OP implicit times (P < 0.0001) in DM animals.
Conclusions: These results provide verification of ERGAssist to identify features of the full-field ERG.
Translational Relevance: This ERG analysis approach can increase the rigor of basic science studies designed to investigate retinal function using full-field ERG. To aid the community, we have developed an open-source graphical user interface (GUI) implementing the methods presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637214 | PMC |
http://dx.doi.org/10.1167/tvst.12.11.14 | DOI Listing |
Diabetes Obes Metab
September 2025
Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Background: Diabetic retinopathy (DR) is a major complication of diabetes mellitus, characterised by retinal vasculopathy and oxidative stress. Semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has demonstrated cardiovascular benefits but has also been associated with mixed effects on DR progression. This study investigates the potential of semaglutide to attenuate DR progression by ameliorating retinal vasculopathy and oxidative stress in both in vivo and in vitro models.
View Article and Find Full Text PDFJ Neurosci
September 2025
Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H4R2
At the glutamatergic synapses between rod photoreceptors and ON-type bipolar cells, neurotransmitter is detected by the postsynaptic metabotropic glutamate receptor mGluR6. This receptor forms trans-synaptic interactions with ELFN1, a presynaptic cell adhesion molecule expressed in rods, and ELFN1 is important for mGluR6 localization at bipolar cell dendritic tips. Here, we show that in mice of either sex lacking mGluR6, the presynaptic localization of ELFN1 is disrupted.
View Article and Find Full Text PDFBMJ Case Rep
September 2025
Ophthalmology, Federal University of Parana, Curitiba, Brazil
Neuroretinitis (NR) is characterised by optic disc oedema associated with macular exudates in a star-shaped pattern. Several aetiologies of NR have been described, with cat-scratch disease being the most common. However, despite thorough investigations, one-quarter of cases are classified as idiopathic neuroretinitis (INR), in which visual prognosis is generally good.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Engin
Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.
View Article and Find Full Text PDFExp Eye Res
September 2025
School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shan
Mitochondria play a crucial role in energy production and are intimately associated with ocular function. Mitochondrial dysfunction can trigger oxidative stress and inflammation, adversely affecting key ocular structures such as the lacrimal gland, lens, retina, and trabecular meshwork. This dysfunction may compromise the barrier properties of the trabecular meshwork, impeding aqueous humour outflow, elevating intraocular pressure, and resulting in optic nerve damage and primary open-angle glaucoma.
View Article and Find Full Text PDF