Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ZFP36L1, which is a negative regulator of gene transcripts, has been proven to regulate the progression of several carcinomas. However, its role in sarcoma remains unknown. Here, by using data analyses and in vivo experiments, we found that ZFP36L1 inhibited the lung metastasis of osteosarcoma (OS). Knockdown of ZFP36L1 promoted OS cell migration by activating TGF-β signaling and increasing SDC4 expression. Intriguingly, we observed a positive feedback loop between SDC4 and TGF-β signaling. SDC4 protected TGFBR3 from matrix metalloproteinase (MMP)-mediated cleavage and therefore relieved the inhibition of TGF-β signaling by soluble TGFBR3, while TGF-β signaling positively regulated SDC4 transcription. We also proved that ZFP36L1 regulated SDC4 mRNA decay through adenylate-uridylate (AU)-rich elements (AREs) in its 3'UTR. Furthermore, treatment with SB431542 (a TGF-β receptor kinase inhibitor) and MK2 inhibitor III (a MAPKAPK2 inhibitor that increases the ability of ZFP36L1 to degrade mRNA) dramatically inhibited OS lung metastasis, suggesting a promising therapeutic approach for the treatment of OS lung metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766520PMC
http://dx.doi.org/10.1038/s41388-023-02880-7DOI Listing

Publication Analysis

Top Keywords

lung metastasis
16
tgf-β signaling
16
feedback loop
8
inhibited lung
8
regulated sdc4
8
zfp36l1
6
signaling
5
tgf-β
5
sdc4
5
low expression
4

Similar Publications

Objectives: The 9th edition of the Tumor, Node, Metastasis (TNM-9) lung cancer classification is set to replace the 8th edition (TNM-8) starting in 2025. Key updates include the splitting of the mediastinal nodal category N2 into single- and multiple-station involvement, as well as the classification of multiple extrathoracic metastatic lesions as involving a single organ system (M1c1) or multiple organ systems (M1c2). This study aimed to assess how the TNM-9 revisions affect the final staging of lung cancer patients and how these changes correlate with overall survival (OS).

View Article and Find Full Text PDF

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, highlighting the urgent need for more effective and targeted therapeutic strategies. Traditional Chinese Medicine (TCM), known for its favorable safety profile and broad pharmacological effects, offers promising candidates for cancer treatment. Salvianolic acid F (SAF), a key bioactive compound derived from , has demonstrated antitumor potential, but its role and underlying mechanisms in lung cancer remain inadequately characterized.

View Article and Find Full Text PDF

Nonsmall cell lung cancer (NSCLC) with SMARCA4 deficiency represents a rare subset of lung tumors characterized by early metastasis, poor response to chemotherapy, and unfavorable prognosis. Established therapy strategies for SMARCA4-deficient NSCLC remain elusive. While immune checkpoint inhibitors have been proposed as a potential solution, their efficacy remains uncertain.

View Article and Find Full Text PDF

Introduction: Trastuzumab deruxtecan (T-DXd) has revolutionised treatment for metastatic breast cancer (MBC). While effective, its high cost and toxicities, such as fatigue and nausea, pose challenges.

Method: Medical records from the Joint Breast Cancer Registry in Singapore were used to study MBC patients treated with T-DXd (February 2021-June 2024).

View Article and Find Full Text PDF

IL12-based phototherapeutic nanoparticles through remodeling tumor-associated macrophages combined with immunogenic tumor cell death for synergistic cancer immunotherapy.

Biomater Sci

September 2025

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.

Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.

View Article and Find Full Text PDF