98%
921
2 minutes
20
K2.1 (TREK1), a two-pore domain potassium channel, has emerged as regulator of leukocyte transmigration into the central nervous system. In the context of skeletal muscle, immune cell infiltration constitutes the pathogenic hallmark of idiopathic inflammatory myopathies (IIMs). However, the underlying mechanisms remain to be elucidated. In this study, we investigated the role of K2.1 in the autoimmune response of IIMs. We detected K2.1 expression in primary skeletal muscle and endothelial cells of murine and human origin. We observed an increased pro-inflammatory cell response, adhesion and transmigration by pharmacological blockade or genetic deletion of K2.1 in vitro and in in vivo myositis mouse models. Of note, our findings were not restricted to endothelial cells as skeletal muscle cells with impaired K2.1 function also demonstrated a strong pro-inflammatory response. Conversely, these features were abrogated by activation of K2.1 and improved the disease course of a myositis mouse model. In humans, K2.1 expression was diminished in IIM patients compared to non-diseased controls arguing for the translatability of our findings. In summary, K2.1 may regulate the inflammatory response of skeletal muscle. Further research is required to understand whether K2.1 could serve as novel therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaut.2023.103136 | DOI Listing |
Oral Surg Oral Med Oral Pathol Oral Radiol
August 2025
Chief Nurse of Dental Science, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China. Electronic address:
Objective: This study aimed to investigate the effects of structured orofacial muscle rehabilitation training (OMRT) on the recovery of facial expression muscles in patients with skeletal Class II malocclusion after orthognathic surgery.
Study Design: This randomized controlled trial enrolled 56 skeletal Class II malocclusion patients who underwent orthognathic surgery. The intervention group received structured OMRT, while the control group received standard postoperative care.
Biophys Rep (N Y)
September 2025
Cellular Signal Transduction in the Cardiovascular System COBRE, University of Nevada Reno, Reno, NV 89557; Department of Nutrition, University of Nevada Reno, Reno, NV 89557. Electronic address:
Skeletal muscle alpha actin (ACTA1) is important for muscle contraction and relaxation, with historical studies focused on ACTA1 mutations in muscle dysfunction. Proteomics reports have consistently observed that actin, including ACTA1, is acetylated at multiple lysine sites. However, few reports have studied the effects of actin acetylation on cellular function, and fewer have examined ACTA1 acetylation on skeletal muscle function.
View Article and Find Full Text PDFJ Physiol
September 2025
Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA.
Cognitive decline and physical impairment are often linked with ageing, contributing to declines in health span and loss of independence in older adults. Pathological cognitive decline with age is largely considered to be a brain-centric challenge. However, recent findings have begun to challenge this paradigm as the health of peripheral systems, namely skeletal muscle, predict cognitive decline associated with Alzheimer's disease (AD).
View Article and Find Full Text PDFJ Frailty Aging
September 2025
Department of Geriatric Medicine, Klinikum Fürth, Fürth, Germany; Institute for Biomedicine of Ageing, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany.
Purpose: Sarcopenia and sarcopenic obesity are defined by the loss of muscle strength and mass. Both diseases pose a growing global challenge. Their prevalences vary between studied populations.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Department of Cellular and Integrative Physiology, University of Nebraska Medical Center. Electronic address:
Background: Excessive oxidative stress is well known to participate in the pathogenesis of hypertension. A major regulator of oxidative stress is the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2). However, the role of Nrf2 in the pathogenesis of hypertension is not completely understood, especially at the endothelial cell level.
View Article and Find Full Text PDF