Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: This study aimed to develop a structured light scanning system with a planar mirror to enhance the digital full-arch implant impression accuracy and to compare it with photogrammetry and intraoral scanner methods.

Materials And Methods: An edentulous maxillary stone cast with six scan bodies was scanned as the reference model using a laboratory scanner. Three scanning modalities were compared (n = 10): (1) self-developed structured light scanning with a mirror (SSLS); (2) intraoral scanner (IOS); and (3) photogrammetry system (PG). The scanners were stopped for 1 min after each scan. Six scan bodies were analysed within each scan model. Linear deviations between the scan bodies (1-2, 1-3, 1-4, 1-5, and 1-6) and 3D mucosal deviations were established. The overall deviation was calculated as the mean of all linear deviations. "Trueness" represented the discrepancy between the test and reference files, while "precision" denoted the consistency among the test files. Kruskal-Wallis and Mann-Whitney U tests were used for statistical analyses.

Results: Significant overall linear discrepancies were noted among the SSLS, PG, and IOS groups (p < .001). SSLS showed the best overall trueness and precision (6.6, 5.7 μm), followed by PG (58.4, 6.8 μm) and IOS (214.6, 329.1 μm). For the 3D mucosal deviation, the trueness (p < .001) and precision (p < .001) of the SSLS group were significantly better than those of the IOS group.

Conclusions: The SSLS exhibited higher accuracy in determining the implant positions than the PG and IOS. Additionally, it demonstrated better accuracy in capturing the mucosa than IOS.

Download full-text PDF

Source
http://dx.doi.org/10.1111/clr.14208DOI Listing

Publication Analysis

Top Keywords

structured light
12
light scanning
12
scan bodies
12
scanning system
8
planar mirror
8
intraoral scanner
8
linear deviations
8
scan
5
accuracy digital
4
digital implant
4

Similar Publications

Imaging Valence Electron Rearrangement in a Chemical Reaction Using Hard X-Ray Scattering.

Phys Rev Lett

August 2025

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.

View Article and Find Full Text PDF

Hopfions-higher-dimensional topological quasiparticles with sophisticated 3D knotted spin textures discovered in condensed matter and photonic systems-show promise in high-density data storage and transfer. Here, we present crystalline structures of hopfions lying in space-time constructed by spatiotemporally structured light. Practical methodologies using bichromatic structured light beams or dipole arrays to assemble 1D and higher dimensional hopfion lattices are proposed, and a technique for tailoring topological orders is elucidated.

View Article and Find Full Text PDF

Essay: Photonic Crystals as a Platform to Explore New Physics.

Phys Rev Lett

August 2025

The Hong Kong University of Science and Technology, Department of Physics and Institute for Advanced Study, Clear Water Bay, Hong Kong SAR, China.

Photonic crystals are artificial materials characterized by a photonic band structure that governs the propagation of light waves. The photonic gap was originally introduced to inhibit spontaneous emission and facilitate photon localization. In this essay, I will highlight how, despite the established understanding of photonic crystals, they remain highly relevant today.

View Article and Find Full Text PDF

Van der Waals Epitaxy of CsPbI/MoS Heterojunction Phototransistors for Neuromorphic Computing.

J Phys Chem Lett

September 2025

Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan 410083, China.

The optoelectronic properties of perovskite/two-dimensional (2D) material van der Waals heterojunctions provide greater potential for innovative neuromorphic devices. However, the traditional growth of heterojunctions still relies on strict lattice matching and high-temperature processes, which hinder high-quality interface construction and efficient carrier transport. Here, the 2D CsPbI/MoS heterojunction is realized via the van der Waals epitaxy process, overcoming lattice matching limitations.

View Article and Find Full Text PDF

Age-related change in children's physical activity and sedentary time: The International Children's Accelerometry Database (ICAD).

PLoS One

September 2025

MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom.

Background: Many young people fail to achieve the minimum recommended amount of physical activity to benefit their health. Understanding the nature of age-related changes in behaviour and how this varies for population sub-groups is informative for intervention design. The aim of this study was to describe age-related changes in physical activity and sedentary time and examine variability in patterns of change across demographic sub-groups.

View Article and Find Full Text PDF