98%
921
2 minutes
20
Since the beginning of the pandemic, SARS-CoV-2 has shown a great genomic variability, resulting in the continuous emergence of new variants that has made their global monitoring and study a priority. This work aimed to study the genomic heterogeneity, the temporal origin, the rate of viral evolution and the population dynamics of the main circulating variants (20E.EU1, Alpha and Delta) in Italy, in August 2020-January 2022 period. For phylogenetic analyses, three datasets were set up, each for a different main lineage/variant circulating in Italy in that time including other Italian and International sequences of the same lineage/variant, available in GISAID sampled in the same times. The international dataset showed 26 (23% Italians, 23% singleton, 54% mixed), 40 (60% mixed, 37.5% Italians, 1 singleton) and 42 (85.7% mixed, 9.5% singleton, 4.8% Italians) clusters with at least one Italian sequence, in 20E.EU1 clade, Alpha and Delta variants, respectively. The estimation of tMRCAs in the Italian clusters (including >70% of genomes from Italy) showed that in all the lineage/variant, the earliest clusters were the largest in size and the most persistent in time and frequently mixed. Isolates from the major Italian Islands tended to segregate in clusters more frequently than those from other part of Italy. The study of infection dynamics showed a positive correlation between the trend in the effective number of infections estimated by BSP model and the R curves estimated by birth-death skyline plot. The present work highlighted different evolutionary dynamics of studied lineages with high concordance between epidemiological parameters estimation and phylodynamic trends suggesting that the mechanism of replacement of the SARS-CoV-2 variants must be related to a complex of factors involving the transmissibility, as well as the implementation of control measures, and the level of cross-immunization within the population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.29193 | DOI Listing |
Mol Biol Rep
September 2025
School of Arts and Sciences, Department of Natural and Applied Sciences, The American University of Iraq-Baghdad, Baghdad, Iraq.
The COVID-19 pandemic, caused by the continuously evolving SARS-CoV-2 virus, has presented persistent global health challenges. As novel variants emerge, many with enhanced transmissibility and immune evasion capabilities, concerns have intensified regarding the efficacy of existing vaccines and therapeutics. This review provides a comprehensive overview of the current landscape of COVID-19 vaccination, including the development and performance of monovalent and bivalent boosters, and examines their effectiveness against newly emerging variants of interest (VOIs) and variants under monitoring (VUMs), such as JN.
View Article and Find Full Text PDFVirology
September 2025
Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.
View Article and Find Full Text PDFVaccine
September 2025
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Jiangxia Laboratory, Wuhan 430200, China. Electronic address:
The spillover and spillback of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals, especially companion animals, threaten global public health security. However, risk assessment of SARS-CoV-2 variants infecting companion animals and the development of corresponding prevention and control technologies are lacking. The aim of this study is to assess the potential risk of enhancement of the infectivity of SARS-CoV-2 in cats owing to mutations at key sites within the spike (S) protein receptor-binding domain (RBD) region and develop an efficient vaccine to cross-neutralize high-risk SARS-CoV-2 variants.
View Article and Find Full Text PDFPediatr Infect Dis J
September 2025
From the School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
Background: Obesity was a risk factor for severe COVID-19 in children during early outbreaks of ancestral SARS-CoV-2 and the Delta variant. However, the relationship between obesity and COVID-19 severity during the Omicron wave remains unclear.
Methods: This multicenter, observational study included polymerase chain r eaction-confirmed SARS-CoV-2-infected children and adolescents from Australia, Brazil, Italy, Portugal, Switzerland, Thailand, the United Kingdom and the United States hospitalized between January 1, 2020, and March 31, 2022.
Phys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDF