98%
921
2 minutes
20
Polygonatum is the largest genus of tribe Polygonateae (Asparagaceae) and is widely distributed in the temperate Northern Hemisphere, especially well diversified in southwestern China to northeastern Asia. Phylogenetic relationships of many species are still controversial. Hence it is necessary to clarify their phylogenetic relationships and infer possible reticulate relationships for the genus. In this study, genome-wide data of 43 species from Polygonatum and its closely related taxa were obtained by Hyb-Seq sequencing. The phylogenetic trees constructed from genome-wide nuclear and chloroplast sequences strongly supported the monophyly of Polygonatum with division into three major clades. A high level of incongruence was detected between nuclear and chloroplast trees as well as among gene trees within the genus, but all occurred within each major clade. However, introgression tests and reticulate evolution analyses revealed low level of gene flow and weak introgression events in the genus, suggesting hybridization and introgression were not dominant during the evolutionary diversification of Polygonatum in the Northern Hemisphere. This study provides important insights into reconstructing evolutionary relationships and speciation pattern of taxa from the north temperate flora.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2023.107962 | DOI Listing |
J Appl Physiol (1985)
September 2025
Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
Individuals who work in the heat, such as military personnel and athletes, are often required to rapidly transition from temperate or cooler climates to hot environments. Thus, acclimation strategies are needed for individuals lacking access to hot weather. We sought to develop and validate a practical exercise with overdressing protocol for heat acclimation.
View Article and Find Full Text PDFTree Physiol
September 2025
Department of Plant Sciences, University of California, Davis, CA, USA.
Pigment dynamics in temperate evergreen forests remain poorly characterized, despite their year-round photosynthetic activity and importance for carbon cycling. Developing rapid, nondestructive methods to estimate pigment composition enables high-throughput assessment of plant acclimation states. In this study, we investigate the seasonality of eight chlorophyll and carotenoid pigments and hyperspectral reflectance data collected at both the needle (400-2400 nm) and canopy (420-850 nm) scales in Pinus palustris (longleaf pine) at the Ordway Swisher Biological Station in north-central Florida, USA.
View Article and Find Full Text PDFbioRxiv
August 2025
UC San Francisco, Dept. of Microbiology & Immunology, 600 16th St N374, San Francisco, CA 94158.
Anti-bacteriophage systems like restriction-modification and CRISPR-Cas have DNA substrate specificity mechanisms that enable identification of invaders. How Gabija, a highly prevalent nuclease-helicase anti-phage system, executes self- vs. non-self-discrimination remains unknown.
View Article and Find Full Text PDFEcol Evol
September 2025
Centro de Investigaciones Biológicas Universidad Autónoma del Estado de Hidalgo Pachuca de Soto Hidalgo Mexico.
The Mexican long-nosed bat () is a nectar-feeding bat distributed seasonally between Mexico and the United States, and it has been declared an endangered species in both countries. Here, we describe for the first time the movement patterns and locations of foraging areas used by lactating females from the only known maternity roost in central Mexico. GPS loggers were placed on 29 lactating females, adhered to the interscapular area with short-term surgical glue.
View Article and Find Full Text PDFAm J Bot
September 2025
Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Xizang University, Lhasa, China.
Premise: The demographic histories of temperate plants in Northeast Asia in response to Quaternary climate oscillations have long been the focus of evolutionary biologists, but have rarely been studied in herbaceous plants. Here, we investigated the phylogeographic patterns of Mukdenia and Oresitrophe.
Methods: We sequenced two plastid regions for O.