Widely targeted metabolomics reveals the effect of different raw materials and drying methods on the quality of instant tea.

Front Nutr

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Instant teas are particularly rich in tea polyphenols and caffeine and have great potential as food ingredients or additives to improve the quality of food and enhance their nutritional and commercial value.

Methods: To determine the relationships between raw material, drying method, and sensory and other quality attributes, instant teas were prepared from three tea varieties, namely black, green and jasmine tea, using two drying methods, namely spray-drying (SD) and freeze-drying (FD).

Results: Both the raw tea material and drying method influenced the quality of the finished instant teas. Black tea was quality stable under two drying, while green tea taste deteriorated much after SD. Jasmine tea must be produced from FD due to huge aroma deterioration after SD. FD produced instant tea with higher sensory quality, which was attributed to the lower processing temperature. Chemical compositional analysis and widely targeted metabolomics revealed that SD caused greater degradation of tea biochemical components. The flavonoids content changed markedly after drying, and metabolomics, combined with OPLS-DA, was able to differentiate the three varieties of tea. Instant tea preparations via SD often lost a large proportion of the original tea aroma compounds, but FD minimized the loss of floral and fruity aroma compounds. Changes in the tea flavonoids composition, especially during drying, contributed to the flavor development of instant tea.

Discussion: These results will provide an practicle method for high-quality instant tea production through choosing proper raw tea material and lowering down drying temperature with non-thermal technologies like FD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600452PMC
http://dx.doi.org/10.3389/fnut.2023.1236216DOI Listing

Publication Analysis

Top Keywords

tea
16
instant tea
16
instant teas
12
targeted metabolomics
8
drying
8
drying methods
8
instant
8
material drying
8
drying method
8
sensory quality
8

Similar Publications

Background and objectives With the continuous presence of microflora, saliva, and frequent intake of coloured food, the colour stability of any aesthetic material may become compromised. Hence, the present study was conducted to evaluate the influence of tea, coffee, and turmeric solutions on the colour stability of commercially available heat-cured and autopolymerizing denture base acrylic resins as well as a soft lining material. Methods Twenty-four rectangular samples measuring 20 mm × 15 mm × 2 mm were prepared for each type of test material.

View Article and Find Full Text PDF

Mechanisms of metabolic-associated fatty liver disease induced by 48-week PCB138 exposure and theabrownin intervention.

Environ Int

September 2025

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:

Metabolic-associated fatty liver disease (MAFLD), linked to lipid dysregulation, poses global health risks. 2,2',3,4,4',5'-hexachlorobiphenyl (PCB138) is a persistent organic pollutant that poses potential threats to liver health due to its environmental persistence and bioaccumulation. Theabrown (TB), a natural compound extracted from black tea, exhibits lipid-lowering and antioxidant properties, but its protective effects on PCB138-induced liver injury have not been thoroughly investigated.

View Article and Find Full Text PDF

In the search for novel succinate dehydrogenase inhibitors (SDHIs) fungicides for managing rice sheath blight (RSB) and sclerotinia stem rot (SSR), 28 pyrazole-4-carboxamides incorporating stilbene or diphenylacetylene scaffolds were synthesized and evaluated for antifungal activities. The results showed that compound exhibited the most promising antifungal efficacy against and with EC (half maximal effective concentration) values of 0.004 and 0.

View Article and Find Full Text PDF

Sustainable and low oxidative damage bleaching strategy for degummed ramie cellulose fibers using NHPI selective catalytic oxidation system.

Int J Biol Macromol

September 2025

College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China. Electronic address:

In this study, a novel bleaching method for ramie cellulose fibers with low oxidative damage was developed by utilizing the properties of sodium percarbonate contained in tea saponin, which slowly releases hydrogen peroxide in the catalytic oxidation system of N-hydroxyphthalimide (NHPI). First, the bleaching process was optimized using response surface design, followed by comparison and characterization of fiber properties prepared under different bleaching systems. Finally, the energy consumption, water consumption, and toxicity of the NHPI/tea saponin system were evaluated.

View Article and Find Full Text PDF

In-situ extrusion 3D printing with tea polyphenol crosslinking for Hyaluronic acid sodium salt -based composite hydrogel scaffolds.

Colloids Surf B Biointerfaces

September 2025

School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.

High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.

View Article and Find Full Text PDF