Thioredoxin domain containing 5 is involved in the hepatic storage of squalene into lipid droplets in a sex-specific way.

J Nutr Biochem

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatic thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family found associated with anti-steatotic properties of squalene and located in the endoplasmic reticulum and in lipid droplets. Considering that the latter are involved in hepatic squalene accumulation, the present research was aimed to investigate the role of TXNDC5 on hepatic squalene management in mice and in the AML12 hepatic cell line. Wild-type and TXNDC5-deficient (KO) mice were fed Western diets with or without 1% squalene supplementation for 6 weeks. In males, but not in females, absence of TXNDC5 blocked hepatic, but not duodenal, squalene accumulation. Hepatic lipid droplets were isolated and characterized using label-free LC-MS/MS analysis. TXNDC5 accumulated in this subcellular compartment of mice receiving squalene and was absent in TXNDC5-KO male mice. The latter mice were unable to store squalene in lipid droplets. CALR and APMAP were some of the proteins that responded to the squalene administration in all studied conditions. CALR and APMAP were positively associated with lipid droplets in the presence of squalene and they were decreased by the absence of TXNDC5. The increased squalene content was reproduced in vitro using AML12 cells incubated with squalene-loaded nanoparticles and this effect was not observed in an engineered cell line lacking TXNDC5. The phenomenon was also present when incubated in the presence of a squalene epoxidase inhibitor, suggesting a mechanism of squalene exocytosis involving CALR and APMAP. In conclusion, squalene accumulation in hepatic lipid droplets is sex-dependent on TXNDC5 that blocks its secretion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2023.109503DOI Listing

Publication Analysis

Top Keywords

lipid droplets
24
squalene
14
squalene accumulation
12
calr apmap
12
hepatic
8
involved hepatic
8
squalene lipid
8
hepatic squalene
8
absence txndc5
8
accumulation hepatic
8

Similar Publications

Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.

View Article and Find Full Text PDF

In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia ().

View Article and Find Full Text PDF

Astrocytes, the predominant glial cells in the central nervous system (CNS), play a pivotal role in maintaining neuronal homeostasis and function. Accumulating evidence suggests that astrocytic dysfunction is closely associated with the pathogenesis of various neurological disorders, including neurodegenerative diseases, ischemic stroke (IS), epilepsy, and glioma. Lipid droplets (LDs), ubiquitous intracellular lipid storage organelles, exhibit metabolic abnormalities that are commonly observed in these neurological conditions, particularly in astrocytes, where LD metabolic dysregulation may serve as a critical link between glial dysfunction and neuronal damage.

View Article and Find Full Text PDF

Maladaptive role of peridroplet mitochondria during lipophagy disruption in pancreatic cancer.

Biochem Biophys Res Commun

September 2025

Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) cells exhibit high metabolic flexibility, enabling survival under glucose limitation by using alternative fuels such as fatty acids. Lipophagy, a selective form of autophagy targeting lipid droplets (LDs), supports mitochondrial respiration during such nutrient stress. Our previous study demonstrated that the LSD1 inhibitor SP-2509 disrupts lipophagy independently of LSD1 inhibition, leading to LD accumulation and ATP depletion in glycolysis-suppressed PDAC cells.

View Article and Find Full Text PDF

Transcriptomic analysis of the mechanism of male reproductive injuries caused by the mixture of three phthalates in rats.

Toxicol Appl Pharmacol

September 2025

Department of Environmental Hygiene and Toxicology, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China. Electronic address:

Phthalates (PEs) are widespread in environment, and human beings are unavoidably exposing to the mixture of PEs, which may induce male reproductive health risks. In order to investigate the mechanism of male reproductive injuries caused by the mixture of di-2-ethylhexyl phthalate, dibutyl phthalate and butyl benzyl phthalate (MPEs), male rats were orally exposed to 16 mg/kg/d MPEs (L-MPEs) and 450 mg/kg/d MPEs (H-MPEs) for 90 days, and the results showed that MPEs decreased the weights of testes, epididymis and periepididymis fat, decreased serum levels of male hormones, increased abnormal sperm rate, and caused testicular histopathological damages, such as atrophy and cavitation of seminiferous tubules, spermatids exfoliation, Leydig cells hyperplasia and accumulation of lipid droplets in the testicular interstitium. Testicular transcriptomic analysis identified 100 differently expressed genes (DEGs) in L-MPEs group and 10,880 DEGs in H-MPEs group, and these DEGs mainly involved in signaling pathways of focal adhesion, PI3K-Akt, AGE-RAGE, axon guidance, PPAR, MAPK and etc.

View Article and Find Full Text PDF