Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
With the continuous advancement of deep-ultraviolet (DUV) communication and optoelectronic detection, research in this field has become a significant focal point in the scientific community. For more accurate information collection and transport, the photodetector array of many pixels is the key of the UV imaging and commnication systems, and its photoelectric performance seriously depends on semiconductor material and array layout. Gallium oxide (GaO) is an emerging wide bandgap semicondutor material which has been widely used in DUV dectection. Therefore, this paper mainly focuses on GaOsemiconductor detector array which has gained widespread attention in the field of DUV technique, from the perspective of individual device to array and its optoelectonic integration, for reviewing and discussing the research progress in design, fabrication, and application of GaOarrays in recent years. It includes the structure design and material selection of array units, units growth and array layout, response to solar blind light, the method of imaging and image recognition. Morever, the future development trend of the photodetector array has been analyzed and reflected, aiming to provide some useful suggestions for the optimizing array structure, improving patterned growth technology and material growth quality. As well as GaOoptoelectronic devices and their applications are discussed in view of device physics and photophysics in detector.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ad079f | DOI Listing |