Genetic Encoding of 7-Aza-l-tryptophan: Isoelectronic Substitution of a Single CH-Group in a Protein for a Nitrogen Atom for Site-Selective Isotope Labeling.

ACS Sens

ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genetic encoding of a noncanonical amino acid (ncAA) in an expression system requires an aminoacyl-tRNA synthetase that specifically recognizes the ncAA, while the ncAA must not be recognized by the canonical protein expression machinery. We succeeded in genetically encoding 7-aza-tryptophan (7AW), which is isoelectronic with tryptophan. The system is fully orthogonal to protein expression in , enabling high-yielding site-selective isotope labeling . 7AW is readily synthesized from serine and 7-aza-indole using a tryptophan synthetase β-subunit (TrpB) mutant, affording easy access to isotope-labeled 7AW. Using labeled 7AW produced from N/C-labeled serine, we produced 7AW mutants of the 25 kDa Zika virus NS2B-NS3 protease. N-HSQC spectra display single cross-peaks at chemical shifts near those observed for the wild-type protein labeled with N/C-tryptophan, confirming the structural integrity of the protein and yielding straightforward NMR resonance assignments for site-specific probing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c01904DOI Listing

Publication Analysis

Top Keywords

genetic encoding
8
site-selective isotope
8
isotope labeling
8
protein expression
8
protein
5
7aw
5
encoding 7-aza-l-tryptophan
4
7-aza-l-tryptophan isoelectronic
4
isoelectronic substitution
4
substitution single
4

Similar Publications

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.

View Article and Find Full Text PDF

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is caused by inactivating variants of ALPL, the gene encoding tissue non-specific alkaline phosphatase (TNSALP). In order to deepen our understanding of the pathogenic mechanisms of HPP, we herein generated ALPL-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene deletion to an iPS clone derived from a healthy subject. We analyzed two ALPL-KO clones, one ALPL-hetero KO clone, and a control clone isogenic except for ALPL.

View Article and Find Full Text PDF

Cortical versus hippocampal network dysfunction in a human brain assembloid model of epilepsy and intellectual disability.

Cell Rep

September 2025

Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un

Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.

View Article and Find Full Text PDF